IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i21p6088-d282686.html
   My bibliography  Save this article

A Simulation Study on the Potential of Moving Urban Freight by a Cross-City Railway Line

Author

Listed:
  • Praful Potti

    (Engineering and Applied Sciences Department, Aston University, Birmingham B4 7ET, UK)

  • Marin Marinov

    (Engineering and Applied Sciences Department, Aston University, Birmingham B4 7ET, UK)

  • Edward Sweeney

    (Engineering and Applied Sciences Department, Aston University, Birmingham B4 7ET, UK)

Abstract

This paper analyses the scope for moving urban freight through rail by evaluating the utilisation levels of the Cross-City railway line in The United Kingdom (UK), running between Lichfield Trent Valley and Birmingham New Street. A simulation model of the railway system was built and implemented using SIMUL8 computer software. The results from the simulation model suggest that the railway line is being under-utilised. These low utilisation levels of the line presented a case to propose three scenarios that has the potential to carry urban freight by rail through Lichfield Trent Valley to Birmingham New Street Station. The total number of services operated on the line is varied between different scenarios. The proposed three scenarios could not only exploit the existing railway infrastructure by improving the utilisation levels of the currently operating railway line, but also proved to reduce an amount of green-house gases (GHGs) emissions that are caused by heavy goods vehicles (HGVs) moving on the road. After simulating all the proposed scenarios in the SIMUL8 simulation software and analysing the results, scenario number 3 seemed to be the best replacement to the actual system as it presents a case to increase the number of train services running per day by in the line by 108 and causing a drastic improvement in the utilisation levels by an increase of 341.71% to that of the actual system. This proposed system has the potential to eliminate 5400 HGVs moving on the road per day that causes a reduction of CO 2 gas by approximately 5.4%. All the scenarios presented in the study assures a sustainable method to move the urban freight by rail that has the potential to reduce congestion and emissions in the West Midlands region of the United Kingdom (UK).

Suggested Citation

  • Praful Potti & Marin Marinov & Edward Sweeney, 2019. "A Simulation Study on the Potential of Moving Urban Freight by a Cross-City Railway Line," Sustainability, MDPI, vol. 11(21), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6088-:d:282686
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/21/6088/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/21/6088/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meiling He & Jiaren Shen & Xiaohui Wu & Jianqiang Luo, 2018. "Logistics Space: A Literature Review from the Sustainability Perspective," Sustainability, MDPI, vol. 10(8), pages 1-24, August.
    2. Ozturk, Onur & Patrick, Jonathan, 2018. "An optimization model for freight transport using urban rail transit," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1110-1121.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abigail Luxton & Marin Marinov, 2020. "Terrorist Threat Mitigation Strategies for the Railways," Sustainability, MDPI, vol. 12(8), pages 1-21, April.
    2. Jianhua Zhang & Ziqi Wang & Shuliang Wang & Shengyang Luan & Wenchao Shao, 2020. "Vulnerability Assessments of Urban Rail Transit Networks Based on Redundant Recovery," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    3. Anna Dolinayova & Vladislav Zitricky & Lenka Cerna, 2020. "Decision-Making Process in the Case of Insufficient Rail Capacity," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    4. Magdalena Mucowska, 2021. "Trends of Environmentally Sustainable Solutions of Urban Last-Mile Deliveries on the E-Commerce Market—A Literature Review," Sustainability, MDPI, vol. 13(11), pages 1-26, May.
    5. Francisco Gildemir Ferreira da Silva & Renata Lúcia Magalhães de Oliveira & Marin Marinov, 2020. "An Analysis of the Effects on Rail Operational Efficiency Due to a Merger between Brazilian Rail Companies: The Case of RUMO-ALL," Sustainability, MDPI, vol. 12(12), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan S. Hayajneh & Xuewei Zhang, 2020. "Logistics Design for Mobile Battery Energy Storage Systems," Energies, MDPI, vol. 13(5), pages 1-14, March.
    2. Di, Zhen & Yang, Lixing & Shi, Jungang & Zhou, Housheng & Yang, Kai & Gao, Ziyou, 2022. "Joint optimization of carriage arrangement and flow control in a metro-based underground logistics system," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 1-23.
    3. Amine Mohamed El Amrani & Mouhsene Fri & Othmane Benmoussa & Naoufal Rouky, 2024. "The Integration of Urban Freight in Public Transportation: A Systematic Literature Review," Sustainability, MDPI, vol. 16(13), pages 1-31, June.
    4. Robichet, Antoine & Nierat, Patrick, 2021. "Consequences of logistics sprawl: Order or chaos? - the case of a parcel service company in Paris metropolitan area," Journal of Transport Geography, Elsevier, vol. 90(C).
    5. Hatzenbühler, Jonas & Jenelius, Erik & Gidófalvi, Gyözö & Cats, Oded, 2023. "Modular vehicle routing for combined passenger and freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    6. Hao Zhang & Jie He & Xiaomeng Shi & Qiong Hong & Jie Bao & Shuqi Xue, 2020. "Technology Characteristics, Stakeholder Pressure, Social Influence, and Green Innovation: Empirical Evidence from Chinese Express Companies," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    7. Trent, Nadia M. & Joubert, Johan W., 2022. "Logistics sprawl and the change in freight transport activity: A comparison of three measurement methodologies," Journal of Transport Geography, Elsevier, vol. 101(C).
    8. Sakai, Takanori & Kawamura, Kazuya & Hyodo, Tetsuro, 2020. "Logistics facilities for intra and inter-regional shipping: Spatial distributions, location choice factors, and externality," Journal of Transport Geography, Elsevier, vol. 86(C).
    9. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Wang, Li & Li, Tianqi, 2024. "Scheduling shared passenger and freight transport for an underground logistics system," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    10. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Li, Tianqi & Liu, Wenqian, 2023. "Optimizing a shared freight and passenger high-speed railway system: A multi-commodity flow formulation with Benders decomposition solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 1-31.
    11. Han Zhang & Yongbo Lv & Jianwei Guo, 2022. "New Development Direction of Underground Logistics from the Perspective of Public Transport: A Systematic Review Based on Scientometrics," Sustainability, MDPI, vol. 14(6), pages 1-31, March.
    12. Hörsting, Lena & Cleophas, Catherine, 2023. "Scheduling shared passenger and freight transport on a fixed infrastructure," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1158-1169.
    13. Ling Zhang & Jingjing Hao & Xiaofeng Ji & Lan Liu, 2019. "Research on the Complex Characteristics of Freight Transportation from a Multiscale Perspective Using Freight Vehicle Trip Data," Sustainability, MDPI, vol. 11(7), pages 1-20, March.
    14. Boshuai Zhao & Juliang Zhang & Wenchao Wei, 2019. "Impact of Time Restriction and Logistics Sprawl on Urban Freight and Environment: The Case of Beijing Agricultural Freight," Sustainability, MDPI, vol. 11(13), pages 1-17, July.
    15. Machado, Bruno & Pimentel, Carina & Sousa, Amaro de, 2023. "Integration planning of freight deliveries into passenger bus networks: Exact and heuristic algorithms," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    16. Sakai, Takanori & Beziat, Adrien & Heitz, Adeline, 2020. "Location factors for logistics facilities: Location choice modeling considering activity categories," Journal of Transport Geography, Elsevier, vol. 85(C).
    17. Luísa Tavares Muzzi de Sousa & Leise Kelli de Oliveira, 2020. "Influence of Characteristics of Metropolitan Areas on the Logistics Sprawl: A Case Study for Metropolitan Areas of the State of Paraná (Brazil)," Sustainability, MDPI, vol. 12(22), pages 1-15, November.
    18. Jiaojiao Li & Jianjun Dong & Rui Ren & Zhilong Chen, 2024. "Modeling Resilience of Metro-Based Urban Underground Logistics System Based on Multi-Layer Interdependent Network," Sustainability, MDPI, vol. 16(22), pages 1-23, November.
    19. Liu, Sijing & He, Nannan & Cao, Xindan & Li, Guoqi & Jian, Ming, 2022. "Logistics cluster and its future development: A comprehensive research review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    20. Yang, Xuan & Kong, Xiang T.R. & Huang, George Q., 2024. "Synchronizing crowdsourced co-modality between passenger and freight transportation services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6088-:d:282686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.