IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5671-d276375.html
   My bibliography  Save this article

Influencing Indicators and Quantitative Assessment of Water Resources Security in Karst Region Based on PSER Model—The Case of Guizhou

Author

Listed:
  • Feng Zhou

    (School of Management, Foreign Trade & Business College of Chongqing Normal University, Chongqing 401520, China)

  • Weici Su

    (School of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China
    Institute of Mountain Resource, Guizhou Academy of Sciences, Guiyang 550001, China)

  • Fengtai Zhang

    (School of Management, Chongqing University of Technology, Chongqing 400054, China)

Abstract

An important basis to achieve a sustainable balance between water availability and demand is effectively identifying the factors affecting water resource security and evaluating the effectiveness of existing water resource management measures. To reasonably evaluate water resource security in Guizhou Province, this study combined the water resource security features, selected the indicator system based on the Press–Status–Effect–Response (PSER) framework, and used Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and grey correlation analysis for the province from 2001 to 2015. This allowed us to identify the main driving factors affecting water resource security. The results showed that: (1) Water resource security in Guizhou Province showed an overall trend of improvement from 2001 to 2015 and reached a maximum index of 0.57 in 2015. This amelioration in water security was mainly due to the continuous improvement of the response and effect subgroup as a result of improvements in its existing subgroup factors (policies), such as water consumption per unit of gross domestic product (GDP), the proportion of water conservancy investment, and the proportion of the tertiary industry. Increased water stress due to rapid economic development, such as water supply for the reservoir, and the instability of the status subgroup, were the main factors negatively affecting water resource security. (2) Reduction of water consumption per USD of industrial value added, the control force of water and soil erosion being strengthened, and investment in water resources being increased, are the key factors for achieving water resource security in Guizhou during this period of rapid social and economic development. This indicates that the existing water resource management measures have been improving water resource security. The management measures need to be further improved in the future to protect water resource.

Suggested Citation

  • Feng Zhou & Weici Su & Fengtai Zhang, 2019. "Influencing Indicators and Quantitative Assessment of Water Resources Security in Karst Region Based on PSER Model—The Case of Guizhou," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5671-:d:276375
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5671/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5671/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Xiao-Yun Chen, 2015. "Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2655-2675, June.
    2. Xiaowei Tong & Martin Brandt & Yuemin Yue & Stephanie Horion & Kelin Wang & Wanda De Keersmaecker & Feng Tian & Guy Schurgers & Xiangming Xiao & Yiqi Luo & Chi Chen & Ranga Myneni & Zheng Shi & Hongso, 2018. "Increased vegetation growth and carbon stock in China karst via ecological engineering," Nature Sustainability, Nature, vol. 1(1), pages 44-50, January.
    3. Gu, Shuzhong & Jenkins, Alan & Gao, Shi-Ji & Lu, Yonglong & Li, Hong & Li, Yuanyuan & Ferrier, Robert C. & Bailey, Mark & Wang, Yiwen & Zhang, Yuan & Qi, Xuebin & Yu, Lili & Ding, Liuqian & Daniell, T, 2017. "Ensuring water resource security in China; the need for advances in evidence-based policy to support sustainable management," Environmental Science & Policy, Elsevier, vol. 75(C), pages 65-69.
    4. Jun-Yi Zhang & La-Chun Wang, 2015. "Assessment of water resource security in Chongqing City of China: What has been done and what remains to be done?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2751-2772, February.
    5. Zhang, Z. & Lu, W.X. & Zhao, Y. & Song, W.B., 2014. "Development tendency analysis and evaluation of the water ecological carrying capacity in the Siping area of Jilin Province in China based on system dynamics and analytic hierarchy process," Ecological Modelling, Elsevier, vol. 275(C), pages 9-21.
    6. U. Pascal Onu & Quan Xie & Ling Xu, 2017. "A Fuzzy TOPSIS model Framework for Ranking Sustainable Water Supply Alternatives," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2579-2593, July.
    7. Al-Saidi, Mohammad, 2017. "Conflicts and security in integrated water resources management," Environmental Science & Policy, Elsevier, vol. 73(C), pages 38-44.
    8. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengtian Lu & Siyu Wang & Xiaoying Wang & Weihong Liao & Chao Wang & Xiaohui Lei & Hao Wang, 2022. "An Assessment of Temporal and Spatial Dynamics of Regional Water Resources Security in the DPSIR Framework in Jiangxi Province, China," IJERPH, MDPI, vol. 19(6), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Tu & Kai Chen & Huayi Wang & Zongmin Li, 2020. "Regional Water Resources Security Evaluation Based on a Hybrid Fuzzy BWM-TOPSIS Method," IJERPH, MDPI, vol. 17(14), pages 1-24, July.
    2. Fangzheng Li & Shasha Lu & Yinan Sun & Xiong Li & Benye Xi & Weiqi Liu, 2015. "Integrated Evaluation and Scenario Simulation for Forest Ecological Security of Beijing Based on System Dynamics Model," Sustainability, MDPI, vol. 7(10), pages 1-29, October.
    3. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    4. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    6. Zhang, Shulin & Su, Xiaoling & Singh, Vijay P & Ayantobo, Olusola Olaitan & Xie, Juan, 2018. "Logarithmic Mean Divisia Index (LMDI) decomposition analysis of changes in agricultural water use: a case study of the middle reaches of the Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 208(C), pages 422-430.
    7. El-Saied E. Metwaly & Hatim M. Al-Yasi & Esmat F. Ali & Hamada A. Farouk & Saad Farouk, 2022. "Deteriorating Harmful Effects of Drought in Cucumber by Spraying Glycinebetaine," Agriculture, MDPI, vol. 12(12), pages 1-16, December.
    8. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    9. Shuang Liu & Kirsten Maclean & Cathy Robinson, 2019. "A cost-effective framework to prioritise stakeholder participation options," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 221-241, November.
    10. Rongrong Xu & Yongxiang Wu & Ming Chen & Xuan Zhang & Wei Wu & Long Tan & Gaoxu Wang & Yi Xu & Bing Yan & Yuedong Xia, 2019. "Calculation of the contribution rate of China’s hydraulic science and technology based on a feedforward neural network," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-22, September.
    11. Mingjing Guo & Ziyu Jiang & Yan Bu & Jinhua Cheng, 2019. "Supporting Sustainable Development of Water Resources: A Social Welfare Maximization Game Model," IJERPH, MDPI, vol. 16(16), pages 1-15, August.
    12. Edyta Kiedrzyńska & Marcin Kiedrzyński & Maciej Zalewski, 2015. "Sustainable floodplain management for flood prevention and water quality improvement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 955-977, March.
    13. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    14. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    15. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    16. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    17. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    18. Salman Sharifazari & Shahab Araghinejad, 2015. "Development of a Nonparametric Model for Multivariate Hydrological Monthly Series Simulation Considering Climate Change Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5309-5322, November.
    19. Li, Zhi & Fang, Gonghuan & Chen, Yaning & Duan, Weili & Mukanov, Yerbolat, 2020. "Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming," Agricultural Water Management, Elsevier, vol. 231(C).
    20. Miodrag Tolimir & Branka Kresović & Katarina Gajić & Violeta Anđelković & Milan Brankov & Marijana Dugalić & Boško Gajić, 2024. "Integrated effect of irrigation rate and plant density on yield, yield components and water use efficiency of maize," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(8), pages 475-482.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5671-:d:276375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.