IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5512-d273753.html
   My bibliography  Save this article

A New Modeling Approach for the Probability Density Distribution Function of Wind power Fluctuation

Author

Listed:
  • Lingzhi Wang

    (School of Automation and Information, Xi’an University of Technology, Xi’an 710048, China
    School of Automation, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
    Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an 710048, China)

  • Jun Liu

    (School of Automation and Information, Xi’an University of Technology, Xi’an 710048, China)

  • Fucai Qian

    (School of Automation and Information, Xi’an University of Technology, Xi’an 710048, China
    Autonomous Systems and Intelligent Control International Joint Research Center, Xi’an Technological University, Xi’an 710021, China)

Abstract

With the rapid development of grid-connected wind power, analysing and describing the probability density distribution characteristics of wind power fluctuation has always been a hot and difficult problem in the wind power field. In traditional methods, a single distribution function model is used to fit the probability density distribution of wind power output fluctuation; however, the results are unsatisfying. Therefore, a new distribution function model is proposed in this work for fitting the probability density distribution to replace a single distribution function model. In form, the new model includes only four parameters which make it easier to implement. Four statistical index models are used to evaluate the distribution function fits with the measured probability data. Simulations are designed to compare the new model with the Gaussian mixture model, and results illustrate the effectiveness and advantages of the newly developed model in fitting the wind power fluctuation probability density distribution. Besides, the fireworks algorithm is adopted for determining the optimal parameters in the distribution function model. The comparison experiments of the fireworks algorithm with the particle swarm optimization (PSO) algorithm and the genetic algorithm (GA) are carried out, which shows that the fireworks algorithm has faster convergence speed and higher accuracy than the two common intelligent algorithms, so it is useful for optimizing parameters in power systems.

Suggested Citation

  • Lingzhi Wang & Jun Liu & Fucai Qian, 2019. "A New Modeling Approach for the Probability Density Distribution Function of Wind power Fluctuation," Sustainability, MDPI, vol. 11(19), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5512-:d:273753
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5512/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5512/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pishgar-Komleh, S.H. & Keyhani, A. & Sefeedpari, P., 2015. "Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 313-322.
    2. Wang, Yibo & Shao, Xinyao & Liu, Chuang & Cai, Guowei & Kou, Lei & Wu, Zhiqiang, 2019. "Analysis of wind farm output characteristics based on descriptive statistical analysis and envelope domain," Energy, Elsevier, vol. 170(C), pages 580-591.
    3. Jaber Valinejad & Mousa Marzband & Mudathir Funsho Akorede & Ian D Elliott & Radu Godina & João Carlos de Oliveira Matias & Edris Pouresmaeil, 2018. "Long-Term Decision on Wind Investment with Considering Different Load Ranges of Power Plant for Sustainable Electricity Energy Market," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    4. Hu, Qinghua & Wang, Yun & Xie, Zongxia & Zhu, Pengfei & Yu, Daren, 2016. "On estimating uncertainty of wind energy with mixture of distributions," Energy, Elsevier, vol. 112(C), pages 935-962.
    5. Katinas, Vladislovas & Gecevicius, Giedrius & Marciukaitis, Mantas, 2018. "An investigation of wind power density distribution at location with low and high wind speeds using statistical model," Applied Energy, Elsevier, vol. 218(C), pages 442-451.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuxing Liu & Linjun Zeng & Jie Zeng & Zhenyi Yang & Na Li & Yuxin Li, 2023. "Scheduling Optimization of IEHS with Uncertainty of Wind Power and Operation Mode of CCP," Energies, MDPI, vol. 16(5), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingzhi Wang & Jun Liu & Fucai Qian, 2019. "Frequency Distribution Model of Wind Speed Based on the Exponential Polynomial for Wind Farms," Sustainability, MDPI, vol. 11(3), pages 1-13, January.
    2. Jung, Christopher & Schindler, Dirk, 2019. "Wind speed distribution selection – A review of recent development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    4. Jaber Valinejad & Mousa Marzband & Michael Elsdon & Ameena Saad Al-Sumaiti & Taghi Barforoushi, 2019. "Dynamic Carbon-Constrained EPEC Model for Strategic Generation Investment Incentives with the Aim of Reducing CO 2 Emissions," Energies, MDPI, vol. 12(24), pages 1-35, December.
    5. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    6. Xiao, Qing & Zhou, Shaowu, 2018. "Probabilistic power flow computation considering correlated wind speeds," Applied Energy, Elsevier, vol. 231(C), pages 677-685.
    7. Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Muhammad Aslam, 2022. "Neutrosophic F-Test for Two Counts of Data from the Poisson Distribution with Application in Climatology," Stats, MDPI, vol. 5(3), pages 1-11, August.
    9. Xu, Jin & Kanyingi, Peter Kairu & Wang, Keyou & Li, Guojie & Han, Bei & Jiang, Xiuchen, 2017. "Probabilistic small signal stability analysis with large scale integration of wind power considering dependence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1258-1270.
    10. Souma Chowdhury & Ali Mehmani & Jie Zhang & Achille Messac, 2016. "Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes," Energies, MDPI, vol. 9(5), pages 1-31, May.
    11. Jingpeng Yue & Zhijian Hu & Amjad Anvari-Moghaddam & Josep M. Guerrero, 2019. "A Multi-Market-Driven Approach to Energy Scheduling of Smart Microgrids in Distribution Networks," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    12. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    13. Saeed, Muhammad Abid & Ahmed, Zahoor & Zhang, Weidong, 2020. "Wind energy potential and economic analysis with a comparison of different methods for determining the optimal distribution parameters," Renewable Energy, Elsevier, vol. 161(C), pages 1092-1109.
    14. Youssef Kassem & Hüseyin Çamur & Ramzi Aateg Faraj Aateg, 2020. "Exploring Solar and Wind Energy as a Power Generation Source for Solving the Electricity Crisis in Libya," Energies, MDPI, vol. 13(14), pages 1-29, July.
    15. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    16. Vladimir Prakht & Vladimir Dmitrievskii & Vadim Kazakbaev & Ekaterina Andriushchenko, 2021. "Comparison of Flux-Switching and Interior Permanent Magnet Synchronous Generators for Direct-Driven Wind Applications Based on Nelder–Mead Optimal Designing," Mathematics, MDPI, vol. 9(7), pages 1-16, March.
    17. Miao, Shuwei & Yang, Hejun & Gu, Yingzhong, 2018. "A wind vector simulation model and its application to adequacy assessment," Energy, Elsevier, vol. 148(C), pages 324-340.
    18. Chadee, Xsitaaz T. & Clarke, Ricardo M., 2018. "Wind resources and the levelized cost of wind generated electricity in the Caribbean islands of Trinidad and Tobago," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2526-2540.
    19. Li, Delei & Geyer, Beate & Bisling, Peter, 2016. "A model-based climatology analysis of wind power resources at 100-m height over the Bohai Sea and the Yellow Sea," Applied Energy, Elsevier, vol. 179(C), pages 575-589.
    20. Lidong Zhang & Qikai Li & Yuanjun Guo & Zhile Yang & Lei Zhang, 2018. "An Investigation of Wind Direction and Speed in a Featured Wind Farm Using Joint Probability Distribution Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5512-:d:273753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.