IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v170y2019icp580-591.html
   My bibliography  Save this article

Analysis of wind farm output characteristics based on descriptive statistical analysis and envelope domain

Author

Listed:
  • Wang, Yibo
  • Shao, Xinyao
  • Liu, Chuang
  • Cai, Guowei
  • Kou, Lei
  • Wu, Zhiqiang

Abstract

In order to make full use of the built wind farm, it is one of the most basic work to analyze the output characteristics. In this paper, a thought of mining wind power output characteristics with the perspective of descriptive statistical analysis and correlation is put forward. Based on the measured data, the output characteristics of the wind farm are analyzed from two aspects of descriptive statistics: the digital feature and the distribution characteristics. Then, in view of the wind speed-power relationship, an envelope domain is constructed to characterize it, and its rationality is verified by the defined data density index of wind power output. The method proposed in this paper is helpful to effectively characterize the output characteristics of wind farm connected to the network, and lays a foundation for better operation and management of wind farms.

Suggested Citation

  • Wang, Yibo & Shao, Xinyao & Liu, Chuang & Cai, Guowei & Kou, Lei & Wu, Zhiqiang, 2019. "Analysis of wind farm output characteristics based on descriptive statistical analysis and envelope domain," Energy, Elsevier, vol. 170(C), pages 580-591.
  • Handle: RePEc:eee:energy:v:170:y:2019:i:c:p:580-591
    DOI: 10.1016/j.energy.2018.12.156
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218325301
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.12.156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jung, Sungmoon & Arda Vanli, O. & Kwon, Soon-Duck, 2013. "Wind energy potential assessment considering the uncertainties due to limited data," Applied Energy, Elsevier, vol. 102(C), pages 1492-1503.
    2. Fagbenle, R.O. & Katende, J. & Ajayi, O.O. & Okeniyi, J.O., 2011. "Assessment of wind energy potential of two sites in North-East, Nigeria," Renewable Energy, Elsevier, vol. 36(4), pages 1277-1283.
    3. Astolfi, Davide & Castellani, Francesco & Garinei, Alberto & Terzi, Ludovico, 2015. "Data mining techniques for performance analysis of onshore wind farms," Applied Energy, Elsevier, vol. 148(C), pages 220-233.
    4. Lin, Jin & Sun, Yuan-zhang & Cheng, Lin & Gao, Wen-zhong, 2012. "Assessment of the power reduction of wind farms under extreme wind condition by a high resolution simulation model," Applied Energy, Elsevier, vol. 96(C), pages 21-32.
    5. Oh, Hyunseok & Kim, Bumsuk, 2015. "Comparison and verification of the deviation between guaranteed and measured wind turbine power performance in complex terrain," Energy, Elsevier, vol. 85(C), pages 23-29.
    6. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    7. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "Models for monitoring wind farm power," Renewable Energy, Elsevier, vol. 34(3), pages 583-590.
    8. Manobel, Bartolomé & Sehnke, Frank & Lazzús, Juan A. & Salfate, Ignacio & Felder, Martin & Montecinos, Sonia, 2018. "Wind turbine power curve modeling based on Gaussian Processes and Artificial Neural Networks," Renewable Energy, Elsevier, vol. 125(C), pages 1015-1020.
    9. Safari, Bonfils, 2011. "Modeling wind speed and wind power distributions in Rwanda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 925-935, February.
    10. Kwon, Soon-Duck, 2010. "Uncertainty analysis of wind energy potential assessment," Applied Energy, Elsevier, vol. 87(3), pages 856-865, March.
    11. Becker, Sarah & Frew, Bethany A. & Andresen, Gorm B. & Zeyer, Timo & Schramm, Stefan & Greiner, Martin & Jacobson, Mark Z., 2014. "Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions," Energy, Elsevier, vol. 72(C), pages 443-458.
    12. Ajayi, Oluseyi O., 2009. "Assessment of utilization of wind energy resources in Nigeria," Energy Policy, Elsevier, vol. 37(2), pages 750-753, February.
    13. Safari, Bonfils & Gasore, Jimmy, 2010. "A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleigh models in Rwanda," Renewable Energy, Elsevier, vol. 35(12), pages 2874-2880.
    14. Nourani Esfetang, Naser & Kazemzadeh, Rasool, 2018. "A novel hybrid technique for prediction of electric power generation in wind farms based on WIPSO, neural network and wavelet transform," Energy, Elsevier, vol. 149(C), pages 662-674.
    15. Altunkaynak, Abdüsselam & Erdik, Tarkan & Dabanlı, İsmail & Şen, Zekai, 2012. "Theoretical derivation of wind power probability distribution function and applications," Applied Energy, Elsevier, vol. 92(C), pages 809-814.
    16. Costa, Alexandre & Crespo, Antonio & Navarro, Jorge & Lizcano, Gil & Madsen, Henrik & Feitosa, Everaldo, 2008. "A review on the young history of the wind power short-term prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1725-1744, August.
    17. Li, X. & Hubacek, K. & Siu, Y.L., 2012. "Wind power in China – Dream or reality?," Energy, Elsevier, vol. 37(1), pages 51-60.
    18. Hu, Qinghua & Wang, Yun & Xie, Zongxia & Zhu, Pengfei & Yu, Daren, 2016. "On estimating uncertainty of wind energy with mixture of distributions," Energy, Elsevier, vol. 112(C), pages 935-962.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lingzhi Wang & Jun Liu & Fucai Qian, 2019. "A New Modeling Approach for the Probability Density Distribution Function of Wind power Fluctuation," Sustainability, MDPI, vol. 11(19), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oluseyi O. Ajayi & Richard O. Fagbenle & James Katende & Julius M. Ndambuki & David O. Omole & Adekunle A. Badejo, 2014. "Wind Energy Study and Energy Cost of Wind Electricity Generation in Nigeria: Past and Recent Results and a Case Study for South West Nigeria," Energies, MDPI, vol. 7(12), pages 1-27, December.
    2. Bossavy, Arthur & Girard, Robin & Kariniotakis, Georges, 2016. "Sensitivity analysis in the technical potential assessment of onshore wind and ground solar photovoltaic power resources at regional scale," Applied Energy, Elsevier, vol. 182(C), pages 145-153.
    3. Ohunakin, O.S. & Adaramola, M.S. & Oyewola, O.M., 2011. "Wind energy evaluation for electricity generation using WECS in seven selected locations in Nigeria," Applied Energy, Elsevier, vol. 88(9), pages 3197-3206.
    4. Sun, Peng & Li, Jian & Wang, Caisheng & Lei, Xiao, 2016. "A generalized model for wind turbine anomaly identification based on SCADA data," Applied Energy, Elsevier, vol. 168(C), pages 550-567.
    5. Yip, Chak Man Andrew & Gunturu, Udaya Bhaskar & Stenchikov, Georgiy L., 2016. "Wind resource characterization in the Arabian Peninsula," Applied Energy, Elsevier, vol. 164(C), pages 826-836.
    6. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    7. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    8. Aliyu, Abubakar Sadiq & Dada, Joseph O. & Adam, Ibrahim Khalil, 2015. "Current status and future prospects of renewable energy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 336-346.
    9. Ajayi, Oluseyi O, 2013. "Sustainable energy development and environmental protection: Implication for selected states in West Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 532-539.
    10. Brimmo, Ayoola T. & Sodiq, Ahmed & Sofela, Samuel & Kolo, Isa, 2017. "Sustainable energy development in Nigeria: Wind, hydropower, geothermal and nuclear (Vol. 1)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 474-490.
    11. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    12. Hu, Yang & Xi, Yunhua & Pan, Chenyang & Li, Gengda & Chen, Baowei, 2020. "Daily condition monitoring of grid-connected wind turbine via high-fidelity power curve and its comprehensive rating," Renewable Energy, Elsevier, vol. 146(C), pages 2095-2111.
    13. González-Aparicio, I. & Zucker, A., 2015. "Impact of wind power uncertainty forecasting on the market integration of wind energy in Spain," Applied Energy, Elsevier, vol. 159(C), pages 334-349.
    14. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    15. Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
    16. Li, Xuan & Zhang, Wei, 2020. "Long-term fatigue damage assessment for a floating offshore wind turbine under realistic environmental conditions," Renewable Energy, Elsevier, vol. 159(C), pages 570-584.
    17. Nielson, Jordan & Bhaganagar, Kiran & Meka, Rajitha & Alaeddini, Adel, 2020. "Using atmospheric inputs for Artificial Neural Networks to improve wind turbine power prediction," Energy, Elsevier, vol. 190(C).
    18. Toft, Henrik Stensgaard & Svenningsen, Lasse & Sørensen, John Dalsgaard & Moser, Wolfgang & Thøgersen, Morten Lybech, 2016. "Uncertainty in wind climate parameters and their influence on wind turbine fatigue loads," Renewable Energy, Elsevier, vol. 90(C), pages 352-361.
    19. Birgir Hrafnkelsson & Gudmundur V. Oddsson & Runar Unnthorsson, 2016. "A Method for Estimating Annual Energy Production Using Monte Carlo Wind Speed Simulation," Energies, MDPI, vol. 9(4), pages 1-14, April.
    20. Santos, Fábio Sandro dos & Nascimento, Kerolly Kedma Felix do & Jale, Jader da Silva & Stosic, Tatijana & Marinho, Manoel H.N. & Ferreira, Tiago A.E., 2021. "Mixture distribution and multifractal analysis applied to wind speed in the Brazilian Northeast region," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:170:y:2019:i:c:p:580-591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.