IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v28y2003i2p183-190.html
   My bibliography  Save this article

Solar drying of pineapple using solar tunnel drier

Author

Listed:
  • Bala, B.K.
  • Mondol, M.R.A.
  • Biswas, B.K.
  • Das Chowdury, B.L.
  • Janjai, S.

Abstract

Field level experiments on solar drying of pineapple using solar tunnel drier were conducted at Bangladesh Agricultural University, Mymensingh, Bangladesh. The drier consists of a transparent plastic covered flat plate collector and a drying tunnel connected in a series to supply hot air directly into the drying tunnel using two dc fans operated by a solar module. This drier has a loading capacity of 120–150 kg of pineapple and a total of eight drying runs were conducted. In all the cases the use of the solar tunnel drier leads to considerable reduction of drying time in comparison to sun drying. The pineapple being dried in the solar tunnel drier were completely protected from rain, insects and dust, and the quality of the pineapple dried in the tunnel drier was of quality dried products as compared to sun dried products. Proximate analysis also indicates that the pineapple dried in the solar tunnel drier is a good quality dried product for human consumption.

Suggested Citation

  • Bala, B.K. & Mondol, M.R.A. & Biswas, B.K. & Das Chowdury, B.L. & Janjai, S., 2003. "Solar drying of pineapple using solar tunnel drier," Renewable Energy, Elsevier, vol. 28(2), pages 183-190.
  • Handle: RePEc:eee:renene:v:28:y:2003:i:2:p:183-190
    DOI: 10.1016/S0960-1481(02)00034-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148102000344
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(02)00034-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bala, B.K. & Woods, J.L., 1995. "Optimization of natural-convection, solar drying systems," Energy, Elsevier, vol. 20(4), pages 285-294.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fudholi, A. & Sopian, K. & Ruslan, M.H. & Alghoul, M.A. & Sulaiman, M.Y., 2010. "Review of solar dryers for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 1-30, January.
    2. Sharma, Atul & Chen, C.R. & Vu Lan, Nguyen, 2009. "Solar-energy drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1185-1210, August.
    3. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    4. Mewa, Eunice A. & Okoth, Michael W. & Kunyanga, Catherine N. & Rugiri, Musa N., 2019. "Experimental evaluation of beef drying kinetics in a solar tunnel dryer," Renewable Energy, Elsevier, vol. 139(C), pages 235-241.
    5. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    6. Boroze, Tchamye & Desmorieux, Hélène & Méot, Jean-Michel & Marouzé, Claude & Azouma, Yaovi & Napo, Kossi, 2014. "Inventory and comparative characteristics of dryers used in the sub-Saharan zone: Criteria influencing dryer choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1240-1259.
    7. S Ayyappan, 2018. "Performance and CO2 mitigation analysis of a solar greenhouse dryer for coconut drying," Energy & Environment, , vol. 29(8), pages 1482-1494, December.
    8. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    9. Janjai, S. & Tung, P., 2005. "Performance of a solar dryer using hot air from roof-integrated solar collectors for drying herbs and spices," Renewable Energy, Elsevier, vol. 30(14), pages 2085-2095.
    10. Luqman Daud & Isaac Simate, 2017. "Drying Kinetics of Sliced Pineapples in a Solar Conduction Dryer," Energy and Environment Research, Canadian Center of Science and Education, vol. 7(2), pages 1-14, December.
    11. Ismail, Muhammad Imran & Yunus, Nor Alafiza & Hashim, Haslenda, 2021. "Integration of solar heating systems for low-temperature heat demand in food processing industry – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    12. Li, Zhimin & Zhong, Hao & Tang, Runsheng & Liu, Tao & Gao, Wenfeng & Zhang, Yue, 2006. "Experimental investigation on solar drying of salted greengages," Renewable Energy, Elsevier, vol. 31(6), pages 837-847.
    13. Nabnean, S. & Janjai, S. & Thepa, S. & Sudaprasert, K. & Songprakorp, R. & Bala, B.K., 2016. "Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes," Renewable Energy, Elsevier, vol. 94(C), pages 147-156.
    14. Rani, Poonam & Tripathy, P.P., 2021. "Drying characteristics, energetic and exergetic investigation during mixed-mode solar drying of pineapple slices at varied air mass flow rates," Renewable Energy, Elsevier, vol. 167(C), pages 508-519.
    15. Patil, Rajendra & Gawande, Rupesh, 2016. "A review on solar tunnel greenhouse drying system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 196-214.
    16. Tiwari, Sumit & Tiwari, G.N. & Al-Helal, I.M., 2016. "Development and recent trends in greenhouse dryer: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1048-1064.
    17. Hamdi, Ilhem & Kooli, Sami & Elkhadraoui, Aymen & Azaizia, Zaineb & Abdelhamid, Fadhel & Guizani, Amenallah, 2018. "Experimental study and numerical modeling for drying grapes under solar greenhouse," Renewable Energy, Elsevier, vol. 127(C), pages 936-946.
    18. Chauhan, Prashant Singh & Kumar, Anil & Gupta, Bhupendra, 2017. "A review on thermal models for greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 548-558.
    19. Azam, Mostafa M. & Eltawil, Mohamed A. & Amer, Baher M.A., 2020. "Thermal analysis of PV system and solar collector integrated with greenhouse dryer for drying tomatoes," Energy, Elsevier, vol. 212(C).
    20. Janjai, S. & Srisittipokakun, N. & Bala, B.K., 2008. "Experimental and modelling performances of a roof-integrated solar drying system for drying herbs and spices," Energy, Elsevier, vol. 33(1), pages 91-103.
    21. Kamil Neyfel Çerçi & Mehmet Daş, 2019. "Modeling of Heat Transfer Coefficient in Solar Greenhouse Type Drying Systems," Sustainability, MDPI, vol. 11(18), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossain, M.A. & Woods, J.L. & Bala, B.K., 2005. "Optimisation of solar tunnel drier for drying of chilli without color loss," Renewable Energy, Elsevier, vol. 30(5), pages 729-742.
    2. Kaluri, Ram Satish & Basak, Tanmay, 2010. "Analysis of distributed thermal management policy for energy-efficient processing of materials by natural convection," Energy, Elsevier, vol. 35(12), pages 5093-5107.
    3. Simate, I.N, 2003. "Optimization of mixed-mode and indirect-mode natural convection solar dryers," Renewable Energy, Elsevier, vol. 28(3), pages 435-453.
    4. Fudholi, Ahmad & Sopian, Kamaruzzaman & Gabbasa, Mohamed & Bakhtyar, B. & Yahya, M. & Ruslan, Mohd Hafidz & Mat, Sohif, 2015. "Techno-economic of solar drying systems with water based solar collectors in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 809-820.
    5. Smitabhindu, R. & Janjai, S. & Chankong, V., 2008. "Optimization of a solar-assisted drying system for drying bananas," Renewable Energy, Elsevier, vol. 33(7), pages 1523-1531.
    6. Anand, Sumeet & Mishra, Dipti Prasad & Sarangi, Shailesh Kumar, 2020. "CFD supported performance analysis of an innovative biomass dryer," Renewable Energy, Elsevier, vol. 159(C), pages 860-872.
    7. Mustayen, A.G.M.B. & Mekhilef, S. & Saidur, R., 2014. "Performance study of different solar dryers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 463-470.
    8. Basak, Tanmay & Anandalakshmi, R. & Kumar, Pushpendra & Roy, S., 2012. "Entropy generation vs energy flow due to natural convection in a trapezoidal cavity with isothermal and non-isothermal hot bottom wall," Energy, Elsevier, vol. 37(1), pages 514-532.
    9. Janjai, S. & Srisittipokakun, N. & Bala, B.K., 2008. "Experimental and modelling performances of a roof-integrated solar drying system for drying herbs and spices," Energy, Elsevier, vol. 33(1), pages 91-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:28:y:2003:i:2:p:183-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.