IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i17p4559-d259840.html
   My bibliography  Save this article

Verification of the Adequacy of the Portuguese Sustainability Assessment Tool of High School Buildings, SAHSB PT , to the Francisco de Holanda High School, Guimarães

Author

Listed:
  • Tatiana Santos Saraiva

    (International Doctoral Program in Sustainable Built Environment, School of Engineering, Minho University, 4800058 Guimarães, Portugal)

  • Manuela Almeida

    (Department of Civil Engineering, School of Engineering, Minho University, 4800058 Guimarães, Portugal)

  • Luís Bragança

    (Department of Civil Engineering, School of Engineering, Minho University, 4800058 Guimarães, Portugal)

  • Maria Teresa Barbosa

    (Department of Civil Engineering, Federal University of Juiz de Fora, 36036 Juiz de Fora, Brazil)

Abstract

Sustainable development can be achieved through several activities. The building and construction sector (B & C sector) is one of the major industries, and it can play a crucial role in the improvement of the most relevant environmental impacts. Nowadays, there are major concerns related to sustainability in construction. All types of buildings have different technical aspects; therefore, it is required to develop specific sustainability assessment tools. A school building has peculiarities connected to aspects of sustainability, as it is a building planned to offer adequate environments for the education of adolescents and children. This article shows the application of the SBTool methodology developed specifically for Portuguese high schools, SAHSB PT (Sustainable Assessment for High School Buildings) methodology, that is being elaborated by the first author in her PhD Thesis. This methodology allows architects, engineers and designers to improve sustainability in school buildings, in projects or in the rehabilitation of buildings. The objective of this research is to apply that evaluation tool in order to verify the efficiency of this methodology, as well as to recognize the level of sustainability of the Francisco de Holanda High School Building, in Guimarães, Portugal. The values found in the application of the Sustainable Assessment for High School Buildings in that high schools demonstrate a good result, as the overall value is A, 75% of the total result.

Suggested Citation

  • Tatiana Santos Saraiva & Manuela Almeida & Luís Bragança & Maria Teresa Barbosa, 2019. "Verification of the Adequacy of the Portuguese Sustainability Assessment Tool of High School Buildings, SAHSB PT , to the Francisco de Holanda High School, Guimarães," Sustainability, MDPI, vol. 11(17), pages 1-21, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4559-:d:259840
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/17/4559/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/17/4559/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elena Bernardi & Salvatore Carlucci & Cristina Cornaro & Rolf André Bohne, 2017. "An Analysis of the Most Adopted Rating Systems for Assessing the Environmental Impact of Buildings," Sustainability, MDPI, vol. 9(7), pages 1-27, July.
    2. Umberto Berardi, 2012. "Sustainability Assessment in the Construction Sector: Rating Systems and Rated Buildings," Sustainable Development, John Wiley & Sons, Ltd., vol. 20(6), pages 411-424, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lavinia Chiara Tagliabue & Fulvio Re Cecconi & Sebastiano Maltese & Stefano Rinaldi & Angelo Luigi Camillo Ciribini & Alessandra Flammini, 2021. "Leveraging Digital Twin for Sustainability Assessment of an Educational Building," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    2. Lihua Liang & Baohua Wen & Feng Xu & Jianwei Yan & Xiangqi Yan & S. Ramesh, 2021. "Linking the Development of Building Sustainability Assessment Tools with the Concept Evolution of Sustainable Buildings," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    3. Jubril Olakitan Atanda & Ayşe Öztürk, 2020. "Social criteria of sustainable development in relation to green building assessment tools," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 61-87, January.
    4. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    5. Mohammad S. M. Almulhim & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Resilience and Environmentally Sustainable Assessment Framework (RESAF) for Domestic Building Materials in Saudi Arabia," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    6. Rashidi, Hamidreza & GhaffarianHoseini, Ali & GhaffarianHoseini, Amirhosein & Nik Sulaiman, Nik Meriam & Tookey, John & Hashim, Nur Awanis, 2015. "Application of wastewater treatment in sustainable design of green built environments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 845-856.
    7. Chandratilake, S.R. & Dias, W.P.S., 2013. "Sustainability rating systems for buildings: Comparisons and correlations," Energy, Elsevier, vol. 59(C), pages 22-28.
    8. Ole Øiene Smedegård & Thomas Jonsson & Bjørn Aas & Jørn Stene & Laurent Georges & Salvatore Carlucci, 2021. "The Implementation of Multiple Linear Regression for Swimming Pool Facilities: Case Study at Jøa, Norway," Energies, MDPI, vol. 14(16), pages 1-24, August.
    9. Çağla Beyaz & Çilen Erçin, 2023. "Evaluation of Modern Architecture Criteria in the Context of Sustainability and Architectural Approach; Modern Period in North Nicosia," Sustainability, MDPI, vol. 15(13), pages 1-48, June.
    10. Bruno Menezes Galindro & Sebastian Welling & Niki Bey & Stig Irving Olsen & Sebastião Roberto Soares & Sven‐Olof Ryding, 2020. "Making use of life cycle assessment and environmental product declarations: A survey with practitioners," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 965-975, October.
    11. Aidana Tleuken & Galym Tokazhanov & Mert Guney & Ali Turkyilmaz & Ferhat Karaca, 2021. "Readiness Assessment of Green Building Certification Systems for Residential Buildings during Pandemics," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    12. Soad Abokhamis Mousavi & Ercan Hoşkara & Kyle M. Woosnam, 2017. "Developing a Model for Sustainable Hotels in Northern Cyprus," Sustainability, MDPI, vol. 9(11), pages 1-23, November.
    13. Reem F. Alruwaili & Nourah Alsadaan & Abeer Nuwayfi Alruwaili & Afrah Ghazi Alrumayh, 2023. "Unveiling the Symbiosis of Environmental Sustainability and Infection Control in Health Care Settings: A Systematic Review," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    14. Muhammad Talha Siddique & Paraskevas Koukaras & Dimosthenis Ioannidis & Christos Tjortjis, 2023. "A Methodology Integrating the Quantitative Assessment of Energy Efficient Operation and Occupant Needs into the Smart Readiness Indicator," Energies, MDPI, vol. 16(19), pages 1-15, October.
    15. Umberto Berardi, 2013. "Sustainability assessment of urban communities through rating systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(6), pages 1573-1591, December.
    16. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    17. Xiao Chen & Yongquan Wen & Nanyang Li, 2016. "Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China," Sustainability, MDPI, vol. 8(10), pages 1-14, September.
    18. Swati Bahale & Thorsten Schuetze, 2023. "Comparative Analysis of Neighborhood Sustainability Assessment Systems from the USA (LEED–ND), Germany (DGNB–UD), and India (GRIHA–LD)," Land, MDPI, vol. 12(5), pages 1-25, May.
    19. Guangdong Wu & Guofeng Qiang & Jian Zuo & Xianbo Zhao & Ruidong Chang, 2018. "What are the Key Indicators of Mega Sustainable Construction Projects? —A Stakeholder-Network Perspective," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
    20. Berardi, Umberto, 2017. "A cross-country comparison of the building energy consumptions and their trends," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 230-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4559-:d:259840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.