IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v29y2014icp449-462.html
   My bibliography  Save this article

What is the most adequate method to assess thermal comfort in hybrid commercial buildings located in hot-humid summer climate?

Author

Listed:
  • Rupp, Ricardo Forgiarini
  • Ghisi, Enedir

Abstract

The aim of this paper is to identify which method to assess thermal comfort is the most appropriate to be used in hybrid commercial buildings located in hot and humid summer climate. Three methods to assess thermal comfort were analysed: (1) ASHRAE 55 for determining acceptable thermal conditions in occupied spaces, (2) ASHRAE 55 for determining acceptable thermal conditions in naturally ventilated spaces and (3) Givoni's chart for hot and humid climates. Models with two geometries, two room sizes per geometry, two solar orientations and three window areas per model were analysed. Simulations were performed using the EnergyPlus programme, with the TRY climate file of Florianópolis. Thermal comfort was evaluated applying the simulations output data into the three methods. Thus, the amount of time (number of hours per year) in which the use of air-conditioning is necessary to bring thermal comfort for the users throughout the year was determined using each method. Such number of hours of use of air-conditioning was also compared with the pattern of use of air-conditioning observed in Florianópolis. The main conclusion is that the most suitable method for use in hot and humid summer climates is the method proposed by Givoni.

Suggested Citation

  • Rupp, Ricardo Forgiarini & Ghisi, Enedir, 2014. "What is the most adequate method to assess thermal comfort in hybrid commercial buildings located in hot-humid summer climate?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 449-462.
  • Handle: RePEc:eee:rensus:v:29:y:2014:i:c:p:449-462
    DOI: 10.1016/j.rser.2013.08.102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113006515
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.08.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nematchoua, Modeste Kameni & Tchinda, René & Ricciardi, Paola & Djongyang, Noël, 2014. "A field study on thermal comfort in naturally-ventilated buildings located in the equatorial climatic region of Cameroon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 381-393.
    2. Carolina Rodriguez & María Coronado & Marta D’Alessandro & Juan Medina, 2019. "The Importance of Standardised Data-Collection Methods in the Improvement of Thermal Comfort Assessment Models for Developing Countries in the Tropics," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    3. Amasyali, Kadir & El-Gohary, Nora M., 2021. "Real data-driven occupant-behavior optimization for reduced energy consumption and improved comfort," Applied Energy, Elsevier, vol. 302(C).
    4. Chen, Xi & Yang, Hongxing & Wang, Yuanhao, 2017. "Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 442-460.
    5. He, Yueer & Liu, Meng & Kvan, Thomas & Peng, Shini, 2017. "An enthalpy-based energy savings estimation method targeting thermal comfort level in naturally ventilated buildings in hot-humid summer zones," Applied Energy, Elsevier, vol. 187(C), pages 717-731.
    6. Mohamed H. Elnabawi & Esmail Saber, 2022. "Reducing carbon footprint and cooling demand in arid climates using an integrated hybrid ventilation and photovoltaic approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3396-3418, March.
    7. Hiyama, Kyosuke & Glicksman, Leon, 2015. "Preliminary design method for naturally ventilated buildings using target air change rate and natural ventilation potential maps in the United States," Energy, Elsevier, vol. 89(C), pages 655-666.
    8. Manzano-Agugliaro, Francisco & Montoya, Francisco G. & Sabio-Ortega, Andrés & García-Cruz, Amós, 2015. "Review of bioclimatic architecture strategies for achieving thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 736-755.
    9. Tejero-González, Ana & Andrés-Chicote, Manuel & García-Ibáñez, Paola & Velasco-Gómez, Eloy & Rey-Martínez, Francisco Javier, 2016. "Assessing the applicability of passive cooling and heating techniques through climate factors: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 727-742.
    10. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:29:y:2014:i:c:p:449-462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.