IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i15p4040-d251862.html
   My bibliography  Save this article

Methodological Approach for the Development of a Simplified Residential Building Energy Estimation in Temperate Climate

Author

Listed:
  • Gabriela Reus-Netto

    (Sustainable Architecture & Habitat Laboratory, Faculty of Architecture & Urbanism, National University of La Plata, Calle 47 #162, 1900 La Plata, Argentina
    Dpto de Construcciones Arquitectónicas I, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, Avenida Reina Mercedes 1, 41012 Seville, Spain)

  • Pilar Mercader-Moyano

    (Dpto de Construcciones Arquitectónicas I, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, Avenida Reina Mercedes 1, 41012 Seville, Spain)

  • Jorge D. Czajkowski

    (Sustainable Architecture & Habitat Laboratory, Faculty of Architecture & Urbanism, National University of La Plata, Calle 47 #162, 1900 La Plata, Argentina)

Abstract

Energy ratings and minimum requirements for thermal envelopes and heating and air conditioning systems emerged as tools to minimize energy consumption and greenhouse gas emissions, improve energy efficiency and promote greater transparency with regard to energy use in buildings. In Latin America, not all countries have building energy efficiency regulations, many of them are voluntary and more than 80% of the existing initiatives are simplified methods and are centered in energy demand analysis and the compliance of admissible values for different indicators. However, the application of these tools, even when simplified, is reduced. The main objective is the development of a simplified calculation method for the estimation of the energy consumption of multifamily housing buildings. To do this, an energy model was created based on the real use and occupation of a reference building, its thermal envelope and its thermal system’s performance. This model was simulated for 42 locations, characterized by their climatic conditions, whilst also considering the thermal transmittance fulfilment. The correlation between energy consumption and the climatic conditions is the base of the proposed method. The input data are seven climatic characteristics. Due to the sociocultural context of Latin America, the proposed method is estimated to have more possible acceptance and applications than other more complex methods, increasing the rate of buildings with an energy assessment. The results have demonstrated a high reliability in the prediction of the statistical models created, as the determination coefficient (R2) is nearly 1 for cooling and heating consumption.

Suggested Citation

  • Gabriela Reus-Netto & Pilar Mercader-Moyano & Jorge D. Czajkowski, 2019. "Methodological Approach for the Development of a Simplified Residential Building Energy Estimation in Temperate Climate," Sustainability, MDPI, vol. 11(15), pages 1-27, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4040-:d:251862
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/15/4040/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/15/4040/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mauricio Nath Lopes & Roberto Lamberts, 2018. "Development of a Metamodel to Predict Cooling Energy Consumption of HVAC Systems in Office Buildings in Different Climates," Sustainability, MDPI, vol. 10(12), pages 1-25, December.
    2. Daniel Sánchez-García & Carlos Rubio-Bellido & Jesús A. Pulido-Arcas & Fco. Javier Guevara-García & Jacinto Canivell, 2018. "Adaptive Comfort Models Applied to Existing Dwellings in Mediterranean Climate Considering Global Warming," Sustainability, MDPI, vol. 10(10), pages 1-21, September.
    3. Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Pomponi & Bernardino D’Amico, 2020. "Low Energy Architecture and Low Carbon Cities: Exploring Links, Scales, and Environmental Impacts," Sustainability, MDPI, vol. 12(21), pages 1-6, November.
    2. Miguel Chen Austin & Katherine Chung-Camargo & Dafni Mora, 2021. "Review of Zero Energy Building Concept-Definition and Developments in Latin America: A Framework Definition for Application in Panama," Energies, MDPI, vol. 14(18), pages 1-30, September.
    3. Wang, Lan & Lee, Eric W.M. & Hussian, Syed Asad & Yuen, Anthony Chun Yin & Feng, Wei, 2021. "Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods," Applied Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinrong Wu & Su Nguyen & Damminda Alahakoon & Daswin De Silva & Nishan Mills & Prabod Rathnayaka & Harsha Moraliyage & Andrew Jennings, 2024. "A Comparative Analysis of Machine Learning-Based Energy Baseline Models across Multiple Building Types," Energies, MDPI, vol. 17(6), pages 1-18, March.
    2. Dongjun Suh & Seongju Chang, 2012. "An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea," Energies, MDPI, vol. 5(11), pages 1-20, November.
    3. Alexandru Pîrjan & Simona-Vasilica Oprea & George Căruțașu & Dana-Mihaela Petroșanu & Adela Bâra & Cristina Coculescu, 2017. "Devising Hourly Forecasting Solutions Regarding Electricity Consumption in the Case of Commercial Center Type Consumers," Energies, MDPI, vol. 10(11), pages 1-36, October.
    4. Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
    5. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    6. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    7. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    8. Wei, Yixuan & Xia, Liang & Pan, Song & Wu, Jinshun & Zhang, Xingxing & Han, Mengjie & Zhang, Weiya & Xie, Jingchao & Li, Qingping, 2019. "Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks," Applied Energy, Elsevier, vol. 240(C), pages 276-294.
    9. Amasyali, Kadir & El-Gohary, Nora M., 2021. "Real data-driven occupant-behavior optimization for reduced energy consumption and improved comfort," Applied Energy, Elsevier, vol. 302(C).
    10. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.
    11. Li, Yanting & Su, Yan & Shu, Lianjie, 2014. "An ARMAX model for forecasting the power output of a grid connected photovoltaic system," Renewable Energy, Elsevier, vol. 66(C), pages 78-89.
    12. Li, Ning & Xia, Liang & Shiming, Deng & Xu, Xiangguo & Chan, Ming-Yin, 2012. "Dynamic modeling and control of a direct expansion air conditioning system using artificial neural network," Applied Energy, Elsevier, vol. 91(1), pages 290-300.
    13. Jeong, Kwangbok & Koo, Choongwan & Hong, Taehoon, 2014. "An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network)," Energy, Elsevier, vol. 71(C), pages 71-79.
    14. Ibrahim, Mohamad & Biwole, Pascal Henry & Achard, Patrick & Wurtz, Etienne & Ansart, Guillaume, 2015. "Building envelope with a new aerogel-based insulating rendering: Experimental and numerical study, cost analysis, and thickness optimization," Applied Energy, Elsevier, vol. 159(C), pages 490-501.
    15. Pino-Mejías, Rafael & Pérez-Fargallo, Alexis & Rubio-Bellido, Carlos & Pulido-Arcas, Jesús A., 2017. "Comparison of linear regression and artificial neural networks models to predict heating and cooling energy demand, energy consumption and CO2 emissions," Energy, Elsevier, vol. 118(C), pages 24-36.
    16. Daniel Sánchez-García & David Bienvenido-Huertas & Mónica Tristancho-Carvajal & Carlos Rubio-Bellido, 2019. "Adaptive Comfort Control Implemented Model (ACCIM) for Energy Consumption Predictions in Dwellings under Current and Future Climate Conditions: A Case Study Located in Spain," Energies, MDPI, vol. 12(8), pages 1-22, April.
    17. Proença, Lúcio Costa & Ghisi, Enedir & Tavares, Davi da Fonseca & Coelho, Gabriel Marcon, 2011. "Potential for electricity savings by reducing potable water consumption in a city scale," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 960-965.
    18. Taesub Lim & Daeung Danny Kim, 2022. "Thermal Comfort Assessment of the Perimeter Zones by Using CFD Simulation," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    19. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo, 2012. "Buildings dynamic simulation: Water loop heat pump systems analysis for European climates," Applied Energy, Elsevier, vol. 91(1), pages 222-234.
    20. Wang, Lan & Lee, Eric W.M. & Yuen, Richard K.K., 2018. "Novel dynamic forecasting model for building cooling loads combining an artificial neural network and an ensemble approach," Applied Energy, Elsevier, vol. 228(C), pages 1740-1753.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4040-:d:251862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.