IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i14p3995-d250996.html
   My bibliography  Save this article

An Integrated Global Food and Energy Security System Dynamics Model for Addressing Systemic Risk

Author

Listed:
  • Roberto Pasqualino

    (Global Sustainability Institute, Anglia Ruskin University, Cambridge CB1 1PT, UK)

  • Irene Monasterolo

    (Institute for Ecological Economics, Vienna University of Economics and Business (WU), 1020 Vienna, Austria)

  • Aled Jones

    (Global Sustainability Institute, Anglia Ruskin University, Cambridge CB1 1PT, UK)

Abstract

In 1972, The Limits to Growth, using the World3 System Dynamics model, modeled for the first time the long-term risk of food security, which would emerge from the complex relation between capital and population growth within the limits of the planet. In this paper, we present a novel system dynamics model to explore the short-term dynamics of the food and energy system within the wider global economic framework. By merging structures of the World3, Money, and Macroeconomy Dynamics (MMD) and the Energy Transition and the Economy (ETE) models, we present a closed system global economy model, where growth is driven by population growth and government debt. The agricultural sector is a general disequilibrium productive sector grounded on World3, where capital investment and land development decisions are made to meet population food need, thus generating cascade demands for the energy and capital sector. Energy and Capital Sectors employ a more standard economic approach in line with MMD and ETE. By taking into account the role of financial, real, and natural capital, the model can be used to explore alternative scenarios driven by uncertainty and risk, such as climate extreme events and their impacts on food production. The paper presents scenario analysis of the impact of an exogenous price, production, and subsidies shock in the food and/or energy dimensions on the economic system, understanding the sources of potential cascade effects, thus providing a systemic risk assessment tool to inform global food security policies.

Suggested Citation

  • Roberto Pasqualino & Irene Monasterolo & Aled Jones, 2019. "An Integrated Global Food and Energy Security System Dynamics Model for Addressing Systemic Risk," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3995-:d:250996
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/14/3995/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/14/3995/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aled W. Jones & Alexander Phillips, 2016. "Historic Food Production Shocks: Quantifying the Extremes," Sustainability, MDPI, vol. 8(5), pages 1-10, April.
    2. Roberto Pasqualino & Aled W. Jones & Irene Monasterolo & Alexander Phillips, 2015. "Understanding Global Systems Today—A Calibration of the World3-03 Model between 1995 and 2012," Sustainability, MDPI, vol. 7(8), pages 1-26, July.
    3. Mr. David Coady & Ian W.H. Parry & Louis Sears & Baoping Shang, 2015. "How Large Are Global Energy Subsidies?," IMF Working Papers 2015/105, International Monetary Fund.
    4. Christiane Baumeister & Lutz Kilian, 2014. "Do oil price increases cause higher food prices? [Biofuels, binding constraints, and agricultural commodity price volatility]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 29(80), pages 691-747.
    5. Christoph Müller & Richard D. Robertson, 2014. "Projecting future crop productivity for global economic modeling," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 37-50, January.
    6. Frank, Stefan & Witzke, Heinz-Peter & Zimmermann, Andrea & Havlík, Petr & Ciaian, Pavel, 2014. "Climate change impacts on European agriculture: a multi model perspective," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 183025, European Association of Agricultural Economists.
    7. Mitchell, Donald, 2008. "A note on rising food prices," Policy Research Working Paper Series 4682, The World Bank.
    8. Morecroft, John D. W., 1988. "System dynamics and microworlds for policymakers," European Journal of Operational Research, Elsevier, vol. 35(3), pages 301-320, June.
    9. Qiu, Cheng & Colson, Gregory & Escalante, Cesar & Wetzstein, Michael, 2012. "Considering macroeconomic indicators in the food before fuel nexus," Energy Economics, Elsevier, vol. 34(6), pages 2021-2028.
    10. Kelvin Balcombe & George Rapsomanikis, 2008. "Bayesian Estimation and Selection of Nonlinear Vector Error Correction Models: The Case of the Sugar-Ethanol-Oil Nexus in Brazil," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(3), pages 658-668.
    11. Hall, Robert E & Jorgenson, Dale W, 1969. "Tax Policy and Investment Behavior: Reply and Further Results," American Economic Review, American Economic Association, vol. 59(3), pages 388-401, June.
    12. Davide Natalini & Aled Wynne Jones & Giangiacomo Bravo, 2015. "Quantitative Assessment of Political Fragility Indices and Food Prices as Indicators of Food Riots in Countries," Sustainability, MDPI, vol. 7(4), pages 1-26, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia Guo & Lixuan Chen & Ge Gao & Sijia Guo & Xiuting Li, 2022. "Simulation Model-Based Research on the Technology Support System for China’s Real Estate Financial Risk Management," Sustainability, MDPI, vol. 14(20), pages 1-12, October.
    2. Yong S. Nyam & Julius H. Kotir & Andries J. Jordaan & Abiodun A. Ogundeji & Adetoso A. Adetoro & Israel R. Orimoloye, 2020. "Towards Understanding and Sustaining Natural Resource Systems through the Systems Perspective: A Systematic Evaluation," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    3. Guojiao Chen & Cuiyou Yao & Lurong Fan & Linze Li & Haiqing Cao, 2022. "Sustainability-oriented system dynamics method for coordinated megacity ecosystem development: the case of Beijing, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 11027-11057, September.
    4. Kristiaan P. W. Kok & Alanya C. L. den Boer & Tomris Cesuroglu & Marjoleine G. van der Meij & Renée de Wildt-Liesveld & Barbara J. Regeer & Jacqueline E. W. Broerse, 2019. "Transforming Research and Innovation for Sustainable Food Systems—A Coupled-Systems Perspective," Sustainability, MDPI, vol. 11(24), pages 1-23, December.
    5. Agie Wandala Putra & Jatna Supriatna & Raldi Hendro Koestoer & Tri Edhi Budhi Soesilo, 2021. "Differences in Local Rice Price Volatility, Climate, and Macroeconomic Determinants in the Indonesian Market," Sustainability, MDPI, vol. 13(8), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stewart, Shamar L. & Isengildina Massa, Olga, 2024. "Food & Oil Price Volatility Dynamics: Insights from a TVP-SVAR-DCC-MIDAS Model," 2024 Annual Meeting, July 28-30, New Orleans, LA 343936, Agricultural and Applied Economics Association.
    2. Cheng, Sheng & Cao, Yan, 2019. "On the relation between global food and crude oil prices: An empirical investigation in a nonlinear framework," Energy Economics, Elsevier, vol. 81(C), pages 422-432.
    3. Sun, Yunpeng & Gao, Pengpeng & Raza, Syed Ali & Shah, Nida & Sharif, Arshian, 2023. "The asymmetric effects of oil price shocks on the world food prices: Fresh evidence from quantile-on-quantile regression approach," Energy, Elsevier, vol. 270(C).
    4. Helmut Herwartz & Alberto Saucedo, 2020. "Food–oil volatility spillovers and the impact of distinct biofuel policies on price uncertainties on feedstock markets," Agricultural Economics, International Association of Agricultural Economists, vol. 51(3), pages 387-402, May.
    5. Raza, Syed Ali & Guesmi, Khaled & Belaid, Fateh & Shah, Nida, 2022. "Time-frequency causality and connectedness between oil price shocks and the world food prices," Research in International Business and Finance, Elsevier, vol. 62(C).
    6. Yoon, Seong-Min, 2022. "On the interdependence between biofuel, fossil fuel and agricultural food prices: Evidence from quantile tests," Renewable Energy, Elsevier, vol. 199(C), pages 536-545.
    7. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    8. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2014. "Oil price shocks and agricultural commodity prices," Energy Economics, Elsevier, vol. 44(C), pages 22-35.
    9. Deborah Bentivoglio & Adele Finco & Mirian Rumenos Piedade Bacchi, 2016. "Interdependencies between Biofuel, Fuel and Food Prices: The Case of the Brazilian Ethanol Market," Energies, MDPI, vol. 9(6), pages 1-16, June.
    10. Pozo, Veronica F. & Bejan, Vladimir & Bachmeier, Lance, 2017. "Are Price Transmissions between U.S. Energy and Corn Markets Asymmetric?," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258232, Agricultural and Applied Economics Association.
    11. Gbadebo Oladosu & Siwa Msangi, 2013. "Biofuel-Food Market Interactions: A Review of Modeling Approaches and Findings," Agriculture, MDPI, vol. 3(1), pages 1-19, February.
    12. Ahmadi, Maryam & Bashiri Behmiri, Niaz & Manera, Matteo, 2016. "How is volatility in commodity markets linked to oil price shocks?," Energy Economics, Elsevier, vol. 59(C), pages 11-23.
    13. Dalheimer, Bernhard & Herwartz, Helmut & Lange, Alexander, 2021. "The threat of oil market turmoils to food price stability in Sub-Saharan Africa," Energy Economics, Elsevier, vol. 93(C).
    14. Lucotte, Yannick, 2016. "Co-movements between crude oil and food prices: A post-commodity boom perspective," Economics Letters, Elsevier, vol. 147(C), pages 142-147.
    15. Colin A. Carter & Gordon C. Rausser & Aaron Smith, 2017. "Commodity Storage and the Market Effects of Biofuel Policies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(4), pages 1027-1055.
    16. Davide Natalini & Giangiacomo Bravo & Aled Wynne Jones, 2019. "Global food security and food riots – an agent-based modelling approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(5), pages 1153-1173, October.
    17. Palazzi, Rafael Baptista & Meira, Erick & Klotzle, Marcelo Cabus, 2022. "The sugar-ethanol-oil nexus in Brazil: Exploring the pass-through of international commodity prices to national fuel prices," Journal of Commodity Markets, Elsevier, vol. 28(C).
    18. Abdelradi, Fadi & Serra, Teresa, 2015. "Food–energy nexus in Europe: Price volatility approach," Energy Economics, Elsevier, vol. 48(C), pages 157-167.
    19. Rafiq, Shuddhasattwa & Bloch, Harry, 2016. "Explaining commodity prices through asymmetric oil shocks: Evidence from nonlinear models," Resources Policy, Elsevier, vol. 50(C), pages 34-48.
    20. Zhengyi Dong, 2019. "Does the Development of Bioenergy Exacerbate the Price Increase of Maize?," Sustainability, MDPI, vol. 11(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3995-:d:250996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.