IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i14p3926-d249635.html
   My bibliography  Save this article

Improving a Heating Supply Water Temperature Control for Radiant Floor Heating Systems in Korean High-Rise Residential Buildings

Author

Listed:
  • Gyuhwan Yeom

    (Department of Building and Plant Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 34158, Korea)

  • Dong Eun Jung

    (Department of Building and Plant Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 34158, Korea)

  • Sung Lok Do

    (Department of Building and Plant Engineering, Hanbat National University, 125 Dongseodaero, Yuseong-gu, Daejeon 34158, Korea)

Abstract

The number of domestic apartment houses in South Korea that use district heating is steadily increasing. In addition, most Korean residential buildings use radiant floor heating systems. For such systems, the heating water temperature supplied by a heat exchanger in a mechanical room serves as one of the critical control parameters for providing heat to individual residential apartments. Fixed temperature (FT) and outdoor temperature reset control (OTR) have conventionally been used to adjust the heating supply water temperature. However, both control methods have a major technical weakness; they do not reflect changes in residents’ heating use. To overcome this issue, this study proposes a new method for controlling the heating supply water temperature, called Residential Energy Demand (RED). To verify the proposed method, researchers conducted both simulation- and experiment-based tests. The RED control method achieved about 4% reduction in heating energy consumption compared to the conventional OTR control process. In addition, the RED control method increased the average indoor temperature by 0.17 °C during the heating period. Therefore, this study demonstrates that the proposed control method is capable of achieving energy savings and a warmer thermal indoor environment.

Suggested Citation

  • Gyuhwan Yeom & Dong Eun Jung & Sung Lok Do, 2019. "Improving a Heating Supply Water Temperature Control for Radiant Floor Heating Systems in Korean High-Rise Residential Buildings," Sustainability, MDPI, vol. 11(14), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3926-:d:249635
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/14/3926/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/14/3926/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xing, Yangang & Hewitt, Neil & Griffiths, Philip, 2011. "Zero carbon buildings refurbishment--A Hierarchical pathway," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3229-3236, August.
    2. Mustafaraj, Giorgio & Marini, Dashamir & Costa, Andrea & Keane, Marcus, 2014. "Model calibration for building energy efficiency simulation," Applied Energy, Elsevier, vol. 130(C), pages 72-85.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Tao & Pan, Yiqun & Mao, Jiachen & Wang, Yonglong & Huang, Zhizhong, 2016. "An automated optimization method for calibrating building energy simulation models with measured data: Orientation and a case study," Applied Energy, Elsevier, vol. 179(C), pages 1220-1231.
    2. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    3. Scott Kelly & Michael Pollitt & Doug Crawford-Brown, 2011. "Building performance evaluation and certification in the UK: a critical review of SAP?," Working Papers EPRG 1219, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    4. Kelly, Scott & Crawford-Brown, Doug & Pollitt, Michael G., 2012. "Building performance evaluation and certification in the UK: Is SAP fit for purpose?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6861-6878.
    5. Dall'O', Giuliano & Bruni, Elisa & Sarto, Luca, 2013. "An Italian pilot project for zero energy buildings: Towards a quality-driven approach," Renewable Energy, Elsevier, vol. 50(C), pages 840-846.
    6. Seyedmohammadreza Heibati & Wahid Maref & Hamed H. Saber, 2019. "Assessing the Energy and Indoor Air Quality Performance for a Three-Story Building Using an Integrated Model, Part One: The Need for Integration," Energies, MDPI, vol. 12(24), pages 1-18, December.
    7. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    8. Lin, Yu-Hao & Tsai, Kang-Ting & Lin, Min-Der & Yang, Ming-Der, 2016. "Design optimization of office building envelope configurations for energy conservation," Applied Energy, Elsevier, vol. 171(C), pages 336-346.
    9. Glasgo, Brock & Hendrickson, Chris & Azevedo, Inês Lima, 2017. "Assessing the value of information in residential building simulation: Comparing simulated and actual building loads at the circuit level," Applied Energy, Elsevier, vol. 203(C), pages 348-363.
    10. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    11. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Cho, Kyuman, 2019. "Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 118-131.
    12. Pedro Paulo Fernandes da Silva & Alberto Hernandez Neto & Ildo Luis Sauer, 2021. "Evaluation of Model Calibration Method for Simulation Performance of a Public Hospital in Brazil," Energies, MDPI, vol. 14(13), pages 1-20, June.
    13. Ahmed, Wahhaj & Asif, Muhammad, 2021. "A critical review of energy retrofitting trends in residential buildings with particular focus on the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Santillán Soto, Néstor & García Cueto, O. Rafael & Ojeda Benítez, Sara & Lambert Arista, Alejandro Adolfo, 2014. "Photovoltaic low power systems and their environmental impact:Yuma, Arizona, U.S.A. case study and projections for Mexicali, Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 172-177.
    15. Liu, Keke & Wang, Meng & Peng, Jinqing & Li, Sihui & Luo, Yimo & Zhang, Xiaofeng, 2024. "Effect of angle of incidence on the optical-electrical-thermal performance of photovoltaic insulated glass units," Renewable Energy, Elsevier, vol. 226(C).
    16. Sibilio, Sergio & Rosato, Antonio & Ciampi, Giovanni & Scorpio, Michelangelo & Akisawa, Atsushi, 2017. "Building-integrated trigeneration system: Energy, environmental and economic dynamic performance assessment for Italian residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 920-933.
    17. Ihara, Takeshi & Gao, Tao & Grynning, Steinar & Jelle, Bjørn Petter & Gustavsen, Arild, 2015. "Aerogel granulate glazing facades and their application potential from an energy saving perspective," Applied Energy, Elsevier, vol. 142(C), pages 179-191.
    18. Xia, Z.H. & Jia, G.S. & Ma, Z.D. & Wang, J.W. & Zhang, Y.P. & Jin, L.W., 2021. "Analysis of economy, thermal efficiency and environmental impact of geothermal heating system based on life cycle assessments," Applied Energy, Elsevier, vol. 303(C).
    19. Smarra, Francesco & Jain, Achin & de Rubeis, Tullio & Ambrosini, Dario & D’Innocenzo, Alessandro & Mangharam, Rahul, 2018. "Data-driven model predictive control using random forests for building energy optimization and climate control," Applied Energy, Elsevier, vol. 226(C), pages 1252-1272.
    20. Bienvenido-Huertas, David & Sánchez-García, Daniel & Rubio-Bellido, Carlos, 2020. "Comparison of energy conservation measures considering adaptive thermal comfort and climate change in existing Mediterranean dwellings," Energy, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3926-:d:249635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.