IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i13p3735-d246701.html
   My bibliography  Save this article

China’s South-to-North Water Diversion Project Empowers Sustainable Water Resources System in the North

Author

Listed:
  • Giri R. Kattel

    (Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
    Water, Environment and Agriculture Program (WEAP), Department of Infrastructure Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia)

  • Wenxiu Shang

    (Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China)

  • Zhongjing Wang

    (Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
    State Key Lab of Hydro-science and Engineering, Tsinghua University, Beijing 100084, China
    State Key Lab of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China)

  • John Langford

    (Water, Environment and Agriculture Program (WEAP), Department of Infrastructure Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia)

Abstract

Global freshwaters are severely depleted. Provision of improved water infrastructure technologies and innovation can address challenges posed by water shortages to environmental sustainability. China’s South-to-North Water Diversion Project has generated extensive debates over sustainability of water resources system in the northern drier region, which faces severe water scarcity hindering ecosystems, agriculture, industries and livelihoods. Some arguments extend the views that large infrastructure projects can have negative implications for biodiversity conservation and ecosystem goods and services. However, this study strengthens the opposite view, as such projects would resolve increasing environmental challenges northern China has been facing over many decades due to severe water shortages. The project empowers connectivity among individuals, community, and organizations that the sustainability of goods and services such as energy, irrigation and water supply are perceived, and livelihoods and the standard of peoples’ living is improved. A resilient, robust and adaptive water infrastructure framework can overcome the challenges of water shortages by meeting a long term social, economic and environmental goals for water resources systems in northern China. Such framework can also identify the thresholds of change and the threats associated with environmental sustainability.

Suggested Citation

  • Giri R. Kattel & Wenxiu Shang & Zhongjing Wang & John Langford, 2019. "China’s South-to-North Water Diversion Project Empowers Sustainable Water Resources System in the North," Sustainability, MDPI, vol. 11(13), pages 1-12, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3735-:d:246701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/13/3735/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/13/3735/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Howells & Sebastian Hermann & Manuel Welsch & Morgan Bazilian & Rebecka Segerström & Thomas Alfstad & Dolf Gielen & Holger Rogner & Guenther Fischer & Harrij van Velthuizen & David Wiberg & Charl, 2013. "Integrated analysis of climate change, land-use, energy and water strategies," Nature Climate Change, Nature, vol. 3(7), pages 621-626, July.
    2. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    3. Saeed Nosratabadi & Amir Mosavi & Shahaboddin Shamshirband & Edmundas Kazimieras Zavadskas & Andry Rakotonirainy & Kwok Wing Chau, 2019. "Sustainable Business Models: A Review," Sustainability, MDPI, vol. 11(6), pages 1-30, March.
    4. Zhisong Chen & Huimin Wang & Xiangtong Qi, 2013. "Pricing and Water Resource Allocation Scheme for the South-to-North Water Diversion Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1457-1472, March.
    5. Jane Qiu, 2010. "China faces up to groundwater crisis," Nature, Nature, vol. 466(7304), pages 308-308, July.
    6. Sheng, Jichuan & Webber, Michael, 2017. "Incentive-compatible payments for watershed services along the Eastern Route of China’s South-North Water Transfer Project," Ecosystem Services, Elsevier, vol. 25(C), pages 213-226.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuqing Liao & Yongchao Ma & Jingliang Chen & Ruirui Liu, 2020. "Evaluation of the Level of Sustainable Development of Provinces in China from 2012 to 2018: A Study Based on the Improved Entropy Coefficient-TOPSIS Method," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    2. repec:aly:journl:202216 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhisong Chen & Lingling Pei, 2018. "Inter-Basin Water Transfer Green Supply Chain Equilibrium and Coordination under Social Welfare Maximization," Sustainability, MDPI, vol. 10(4), pages 1-28, April.
    2. Xiaowei Chuai & Ye Yuan & Rongqin Zhao & Song Song, 2021. "High-resolution monitoring of inland water bodies across China in long time series and water resource changes," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3673-3695, March.
    3. repec:aly:journl:202216 is not listed on IDEAS
    4. Correa-Cano, M.E. & Salmoral, G. & Rey, D. & Knox, J.W. & Graves, A. & Melo, O. & Foster, W. & Naranjo, L. & Zegarra, E. & Johnson, C. & Viteri-Salazar, O. & Yan, X., 2022. "A novel modelling toolkit for unpacking the Water-Energy-Food-Environment (WEFE) nexus of agricultural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Mengdi Li & Yaoping Cui & Yaochen Qin & Zhifang Shi & Nan Li & Xiaoyan Liu & Yadi Run & Oliva Gabriel Chubwa, 2021. "Estimating the Impact of Ecological Migrants on the South-to-North Water Diversion in China," IJERPH, MDPI, vol. 18(23), pages 1-16, November.
    6. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    7. Yuichiro Yoshida & Han Soo Lee & Bui Huy Trung & Hoang-Dung Tran & Mahrjan Keshlav Lall & Kifayatullah Kakar & Tran Dang Xuan, 2020. "Impacts of Mainstream Hydropower Dams on Fisheries and Agriculture in Lower Mekong Basin," Sustainability, MDPI, vol. 12(6), pages 1-21, March.
    8. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    9. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    10. Antonio J. Castro & Cristina Quintas-Soriano & Jodi Brandt & Carla L. Atkinson & Colden V. Baxter & Morey Burnham & Benis N. Egoh & Marina García-Llorente & Jason P. Julian & Berta Martín-López & Feli, 2018. "Applying Place-Based Social-Ecological Research to Address Water Scarcity: Insights for Future Research," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    11. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
    12. Koh, Rachel & Kern, Jordan & Galelli, Stefano, 2022. "Hard-coupling water and power system models increases the complementarity of renewable energy sources," Applied Energy, Elsevier, vol. 321(C).
    13. Ingrid Boas & Frank Biermann & Norichika Kanie, 2016. "Cross-sectoral strategies in global sustainability governance: towards a nexus approach," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 16(3), pages 449-464, June.
    14. Qiting Zuo & Yixuan Diao & Lingang Hao & Chunhui Han, 2020. "Comprehensive Evaluation of the Human-Water Harmony Relationship in Countries Along the “Belt and Road”," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4019-4035, October.
    15. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    16. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    17. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    18. Lucia de Strasser, 2017. "Calling for Nexus Thinking in Africa’s Energy Planning," ESP: Energy Scenarios and Policy 263161, Fondazione Eni Enrico Mattei (FEEM).
    19. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    20. Christian Franco-Crespo & Jose Maria Sumpsi Viñas, 2017. "The Impact of Pricing Policies on Irrigation Water for Agro-Food Farms in Ecuador," Sustainability, MDPI, vol. 9(9), pages 1-18, August.
    21. Sebastian Schroedel, 2023. "The Sustainable Business Model Database: 92 Patterns That Enable Sustainability in Business Model Innovation," Sustainability, MDPI, vol. 15(10), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3735-:d:246701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.