IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i13d10.1007_s11269-020-02632-2.html
   My bibliography  Save this article

Comprehensive Evaluation of the Human-Water Harmony Relationship in Countries Along the “Belt and Road”

Author

Listed:
  • Qiting Zuo

    (Zhengzhou University
    Zhengzhou Key Laboratory of Water Resource and Environment)

  • Yixuan Diao

    (Zhengzhou University)

  • Lingang Hao

    (Jiangsu Yuzhi River Basin Management Technology Research Institute)

  • Chunhui Han

    (Zhengzhou University)

Abstract

An accurate assessment of the harmonious relationship between human beings and water resources is central to conducting the comprehensive management of water resources. The human-water relationship in the “Belt and Road” region is complex, but there is a lack of systematic quantitative research. An inadequate understanding of the human-water relationship hinders decision-makers in recognizing water management priorities. To fill this gap, this paper first selects six criteria for human-water harmony from the perspectives of a humanistic system and a water system. Based on these criteria, representative indexes were selected, and the harmony degree equation was used to calculate the degree of human-water harmony in 43 countries along the “Belt and Road” in 2002, 2007, 2012 and 2017. The results revealed that human-water harmony mainly exhibited a high rate of change in developing countries, while harmony was relatively stable in developed countries and generally higher than that in developing countries. At the same time, countries in the “Belt and Road” region had different human-water relationship problems, and it was necessary to solve these problems according to their national conditions. This study can be used by countries to propel themselves out of their unique situation and understand the human-water relationship from an overall perspective by conducting a comparative analysis of different countries at the national scale. These results can provide a reference for solving the harmonious development problem of the human-water relationship in countries along the “Belt and Road”.

Suggested Citation

  • Qiting Zuo & Yixuan Diao & Lingang Hao & Chunhui Han, 2020. "Comprehensive Evaluation of the Human-Water Harmony Relationship in Countries Along the “Belt and Road”," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4019-4035, October.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:13:d:10.1007_s11269-020-02632-2
    DOI: 10.1007/s11269-020-02632-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02632-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02632-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Teixidó-Figueras, Jordi & Duro, Juan Antonio, 2015. "The building blocks of International Ecological Footprint inequality: A Regression-Based Decomposition," Ecological Economics, Elsevier, vol. 118(C), pages 30-39.
    2. Yifan Ding & Deshan Tang & Huichao Dai & Yuhang Wei, 2014. "Human-Water Harmony Index: A New Approach to Assess the Human Water Relationship," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1061-1077, March.
    3. Robert Bain & Ryan Cronk & Jim Wright & Hong Yang & Tom Slaymaker & Jamie Bartram, 2014. "Fecal Contamination of Drinking-Water in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis," PLOS Medicine, Public Library of Science, vol. 11(5), pages 1-23, May.
    4. Liu, Dehai & Ji, Xiaoxian & Tang, Jiafu & Li, Hongyi, 2020. "A fuzzy cooperative game theoretic approach for multinational water resource spatiotemporal allocation," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1025-1037.
    5. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    6. Cao, Xinchun & Zeng, Wen & Wu, Mengyang & Guo, Xiangping & Wang, Weiguang, 2020. "Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation," Agricultural Water Management, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaona Li & Weimin Ma & Xiaosheng Wang & Longfei Zhang, 2022. "A Hybrid DPSR and Entropy-Weight-Based Uncertain Comprehensive Evaluation Method for Human-Water Harmony Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1727-1743, March.
    2. Xixi Du & Yi Qin & Chunbo Huang, 2022. "Status and Prospect of Ecological Environment in the Belt and Road Initiative Regions," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
    3. Bin Wang & Ao Sun & Qiuxia Zheng & Dianting Wu, 2021. "Spatio-Temporal Characteristics of Green Development Cooperation Network among Belt and Road Initiative Regions and Countries," Sustainability, MDPI, vol. 13(20), pages 1-30, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaona Li & Weimin Ma & Xiaosheng Wang & Longfei Zhang, 2022. "A Hybrid DPSR and Entropy-Weight-Based Uncertain Comprehensive Evaluation Method for Human-Water Harmony Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1727-1743, March.
    2. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    3. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    4. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Antonio J. Castro & Cristina Quintas-Soriano & Jodi Brandt & Carla L. Atkinson & Colden V. Baxter & Morey Burnham & Benis N. Egoh & Marina García-Llorente & Jason P. Julian & Berta Martín-López & Feli, 2018. "Applying Place-Based Social-Ecological Research to Address Water Scarcity: Insights for Future Research," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    6. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    7. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    8. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    9. Rabeya Sultana Leya & Sujit Kumar Bala & Imran Hossain Newton & Md. Arif Chowdhury & Shamim Mahabubul Haque, 2022. "Water security assessment of a peri-urban area: a study in Singair Upazila of Manikganj district of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14106-14129, December.
    10. Morten Graversgaard & Beatrice Hedelin & Laurence Smith & Flemming Gertz & Anker Lajer Højberg & John Langford & Grit Martinez & Erik Mostert & Emilia Ptak & Heidi Peterson & Nico Stelljes & Cors Van , 2018. "Opportunities and Barriers for Water Co-Governance—A Critical Analysis of Seven Cases of Diffuse Water Pollution from Agriculture in Europe, Australia and North America," Sustainability, MDPI, vol. 10(5), pages 1-39, May.
    11. Ayse Ercumen & Benjamin F Arnold, 2015. "Upgrading a Piped Water Supply from Intermittent to Continuous Delivery and Association with Waterborne Illness: A Matched Cohort Study in Urban India," Working Papers id:7729, eSocialSciences.
    12. John Tzilivakis & D. Warner & A. Green & K. Lewis, 2015. "Adapting to climate change: assessing the vulnerability of ecosystem services in Europe in the context of rural development," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(4), pages 547-572, April.
    13. M. G. Hutchins & M. J. Bowes, 2018. "Balancing Water Demand Needs with Protection of River Water Quality by Minimising Stream Residence Time: an Example from the Thames, UK," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2561-2568, May.
    14. Yunfei Feng & Yi Zhang & Zhaodan Wu & Quanliang Ye & Xinchun Cao, 2023. "Evaluation of Agricultural Eco-Efficiency and Its Spatiotemporal Differentiation in China, Considering Green Water Consumption and Carbon Emissions Based on Undesired Dynamic SBM-DEA," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    15. Ting Xu & Baisha Weng & Denghua Yan & Kun Wang & Xiangnan Li & Wuxia Bi & Meng Li & Xiangjun Cheng & Yinxue Liu, 2019. "Wetlands of International Importance: Status, Threats, and Future Protection," IJERPH, MDPI, vol. 16(10), pages 1-23, May.
    16. Donna, Javier & Espin-Sanchez, Jose, 2014. "The Illiquidity of Water Markets," MPRA Paper 55078, University Library of Munich, Germany.
    17. Kaiser, Nina N. & Ghermandi, Andrea & Feld, Christian K. & Hershkovitz, Yaron & Palt, Martin & Stoll, Stefan, 2021. "Societal benefits of river restoration – Implications from social media analysis," Ecosystem Services, Elsevier, vol. 50(C).
    18. Maria Carmela Aprile & Damiano Fiorillo, 2016. "Water Conservation Behavior and Environmental Concerns," Discussion Papers 6_2016, CRISEI, University of Naples "Parthenope", Italy.
    19. Teng Wang & Jingjing Yan & Jinlong Ma & Fei Li & Chaoyang Liu & Ying Cai & Si Chen & Jingjing Zeng & Yu Qi, 2018. "A Fuzzy Comprehensive Assessment and Hierarchical Management System for Urban Lake Health: A Case Study on the Lakes in Wuhan City, Hubei Province, China," IJERPH, MDPI, vol. 15(12), pages 1-16, November.
    20. Wei Yang & Junnian Song, 2019. "Depicting Flows of Embodied Water Pollutant Discharge within Production System: Case of an Undeveloped Region," Sustainability, MDPI, vol. 11(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:13:d:10.1007_s11269-020-02632-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.