IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i10p2852-d232540.html
   My bibliography  Save this article

HEREVEA Tool for Economic and Environmental Impact Evaluation for Sustainable Planning Policy in Housing Renovation

Author

Listed:
  • María Rocío Ruiz-Pérez

    (Departamento de Construcciones Arquitectónicas 2, Escuela Técnica Superior de Ingeniería de Edificación, Universidad de Sevilla, 41012 Sevilla, Spain)

  • Mª Desirée Alba-Rodríguez

    (Departamento de Construcciones Arquitectónicas 2, Escuela Técnica Superior de Ingeniería de Edificación, Universidad de Sevilla, 41012 Sevilla, Spain)

  • Raúl Castaño-Rosa

    (Departamento de Construcciones Arquitectónicas 2, Escuela Técnica Superior de Ingeniería de Edificación, Universidad de Sevilla, 41012 Sevilla, Spain)

  • Jaime Solís-Guzmán

    (Departamento de Construcciones Arquitectónicas 2, Escuela Técnica Superior de Ingeniería de Edificación, Universidad de Sevilla, 41012 Sevilla, Spain)

  • Madelyn Marrero

    (Departamento de Construcciones Arquitectónicas 2, Escuela Técnica Superior de Ingeniería de Edificación, Universidad de Sevilla, 41012 Sevilla, Spain)

Abstract

Dwelling renovation has gained major importance in the European Union due to the current need for the urban regeneration of many cities, most of whose existing buildings (approximately 60%) were built in the 1960s to 1980s. These renovations require improvements in aspects such as structural integrity, accessibility, and the updating of deteriorated or obsolescent installations. This reveals that building renovations constitute a key factor in the future of the European building sector and must be included in strategies both for the reduction of this sector’s environmental impact and for climate change mitigation. In order to determine the effectiveness of renovations and their impact, the HEREVEA (Huella Ecológica de la Rehabilitacion de Viviendas en Andalucia or Ecological Footprint of the Renovation of Dwellings in Andalusia) model is proposed on data obtained from the project’s bill of quantities, its ecological footprint is assessed, and the economic-environmental feasibility of different proposals are evaluated simultaneously. The resulting model is integrated into a geographic information system, which allows georeferenced results. The tool can be used for sustainable and resilient planning policy-making at all government levels, and for the decision-making processes. In this paper, economic and environmental indicators are, for the first time, simultaneously assessed through statistical normalization obtained from 50 cases analyzed in the city of Seville. Furthermore, five case studies are assessed in detail in order to determine the sensitivity of the model. These renovations represent less than 30% of the cost and 6% of the ecological footprint of a new construction project. During the subsequent 25 years, the energy efficiency improvements could significantly reduce the CO2 emissions that are due to direct consumption.

Suggested Citation

  • María Rocío Ruiz-Pérez & Mª Desirée Alba-Rodríguez & Raúl Castaño-Rosa & Jaime Solís-Guzmán & Madelyn Marrero, 2019. "HEREVEA Tool for Economic and Environmental Impact Evaluation for Sustainable Planning Policy in Housing Renovation," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2852-:d:232540
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/10/2852/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/10/2852/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bin, Guoshu & Parker, Paul, 2012. "Measuring buildings for sustainability: Comparing the initial and retrofit ecological footprint of a century home – The REEP House," Applied Energy, Elsevier, vol. 93(C), pages 24-32.
    2. Toleikyte, Agne & Kranzl, Lukas & Müller, Andreas, 2018. "Cost curves of energy efficiency investments in buildings – Methodologies and a case study of Lithuania," Energy Policy, Elsevier, vol. 115(C), pages 148-157.
    3. Xing, Yangang & Hewitt, Neil & Griffiths, Philip, 2011. "Zero carbon buildings refurbishment--A Hierarchical pathway," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3229-3236, August.
    4. Morelli, Martin & Harrestrup, Maria & Svendsen, Svend, 2014. "Method for a component-based economic optimisation in design of whole building renovation versus demolishing and rebuilding," Energy Policy, Elsevier, vol. 65(C), pages 305-314.
    5. Shin, Sungwoo & Tae, Sungho & Woo, Jeehwan & Roh, Seungjun, 2011. "The development of environmental load evaluation system of a standard Korean apartment house," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1239-1249, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Madelyn Marrero & Maciej Wojtasiewicz & Alejandro Martínez-Rocamora & Jaime Solís-Guzmán & M. Desirée Alba-Rodríguez, 2020. "BIM-LCA Integration for the Environmental Impact Assessment of the Urbanization Process," Sustainability, MDPI, vol. 12(10), pages 1-24, May.
    2. Cecília Szigeti & Zoltán Major & Dániel Róbert Szabó & Áron Szennay, 2023. "The Ecological Footprint of Construction Materials—A Standardized Approach from Hungary," Resources, MDPI, vol. 12(1), pages 1-15, January.
    3. Wang, Hao & Zhao, Yizhu & Gao, Xichen & Gao, Boyang, 2021. "Collaborative decision-making for urban regeneration: A literature review and bibliometric analysis," Land Use Policy, Elsevier, vol. 107(C).
    4. Manganelli, Benedetto & Tataranna, Sabina & Pontrandolfi, Piergiuseppe, 2020. "A model to support the decision-making in urban regeneration," Land Use Policy, Elsevier, vol. 99(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scott Kelly & Michael Pollitt & Doug Crawford-Brown, 2011. "Building performance evaluation and certification in the UK: a critical review of SAP?," Working Papers EPRG 1219, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    2. Kelly, Scott & Crawford-Brown, Doug & Pollitt, Michael G., 2012. "Building performance evaluation and certification in the UK: Is SAP fit for purpose?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6861-6878.
    3. Dall'O', Giuliano & Bruni, Elisa & Sarto, Luca, 2013. "An Italian pilot project for zero energy buildings: Towards a quality-driven approach," Renewable Energy, Elsevier, vol. 50(C), pages 840-846.
    4. Ieva Pakere & Dace Lauka & Dagnija Blumberga, 2020. "Does the Balance Exist between Cost Efficiency of Different Energy Efficiency Measures? DH Systems Case," Energies, MDPI, vol. 13(19), pages 1-16, October.
    5. Seyedmohammadreza Heibati & Wahid Maref & Hamed H. Saber, 2019. "Assessing the Energy and Indoor Air Quality Performance for a Three-Story Building Using an Integrated Model, Part One: The Need for Integration," Energies, MDPI, vol. 12(24), pages 1-18, December.
    6. Giraudet, Louis-Gaëtan & Bourgeois, Cyril & Quirion, Philippe, 2021. "Policies for low-carbon and affordable home heating: A French outlook," Energy Policy, Elsevier, vol. 151(C).
    7. Pasquali, Andrea & Klinge Jacobsen, Henrik, 2019. "Construction of energy savings cost curves: An application for Denmark," MPRA Paper 93076, University Library of Munich, Germany.
    8. Georgios Tsoumanis & João Formiga & Nuno Bilo & Panagiotis Tsarchopoulos & Dimosthenis Ioannidis & Dimitrios Tzovaras, 2021. "The Smart Evolution of Historical Cities: Integrated Innovative Solutions Supporting the Energy Transition while Respecting Cultural Heritage," Sustainability, MDPI, vol. 13(16), pages 1-29, August.
    9. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    10. Tae Hyoung Kim & Sung Ho Tae & Sung Joon Suk & George Ford & Keun Hyek Yang, 2016. "An Optimization System for Concrete Life Cycle Cost and Related CO 2 Emissions," Sustainability, MDPI, vol. 8(4), pages 1-19, April.
    11. Qing He & Haiyang Zhao & Lin Shen & Liuqun Dong & Ye Cheng & Ke Xu, 2019. "Factors Influencing Residents’ Intention toward Green Retrofitting of Existing Residential Buildings," Sustainability, MDPI, vol. 11(15), pages 1-23, August.
    12. Wang, Xiaotong & Lu, Meijun & Mao, Wei & Ouyang, Jinlong & Zhou, Bo & Yang, Yunkai, 2015. "Improving benefit-cost analysis to overcome financing difficulties in promoting energy-efficient renovation of existing residential buildings in China," Applied Energy, Elsevier, vol. 141(C), pages 119-130.
    13. Ahmed, Wahhaj & Asif, Muhammad, 2021. "A critical review of energy retrofitting trends in residential buildings with particular focus on the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Santillán Soto, Néstor & García Cueto, O. Rafael & Ojeda Benítez, Sara & Lambert Arista, Alejandro Adolfo, 2014. "Photovoltaic low power systems and their environmental impact:Yuma, Arizona, U.S.A. case study and projections for Mexicali, Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 172-177.
    15. Marc Ringel & Roufaida Laidi & Djamel Djenouri, 2019. "Multiple Benefits through Smart Home Energy Management Solutions -- A Simulation-Based Case Study of a Single-Family House in Algeria and Germany," Papers 1904.11496, arXiv.org.
    16. Liu, Keke & Wang, Meng & Peng, Jinqing & Li, Sihui & Luo, Yimo & Zhang, Xiaofeng, 2024. "Effect of angle of incidence on the optical-electrical-thermal performance of photovoltaic insulated glass units," Renewable Energy, Elsevier, vol. 226(C).
    17. Sibilio, Sergio & Rosato, Antonio & Ciampi, Giovanni & Scorpio, Michelangelo & Akisawa, Atsushi, 2017. "Building-integrated trigeneration system: Energy, environmental and economic dynamic performance assessment for Italian residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 920-933.
    18. Teresa Blázquez & Tiziano Dalla Mora & Simone Ferrari & Piercarlo Romagnoni & Lorenzo Teso & Federica Zagarella, 2022. "Renovating Building Groups in the Mediterranean Climate: Cost-Effectiveness of Renewable-Based Heating Alternatives in the Italian Context," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    19. Kang, Heejae & Kim, Yoori & Lee, Jungbae & Baek, Jungho, 2022. "Estimating the cost of saving electricity of energy efficiency programs: A case study of South Korea," Energy Policy, Elsevier, vol. 160(C).
    20. Sotiriou, Chryso & Michopoulos, Apostolos & Zachariadis, Theodoros, 2019. "On the cost-effectiveness of national economy-wide greenhouse gas emissions abatement measures," Energy Policy, Elsevier, vol. 128(C), pages 519-529.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2852-:d:232540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.