IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i10p2731-d230846.html
   My bibliography  Save this article

The Enhancement of Lump Coal Percentage by High-Pressure Pulsed Hydraulic Fracturing for Sustainable Development of Coal Mines

Author

Listed:
  • Hao Yan

    (State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining & Technology, Xuzhou 221116, China
    School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia)

  • Jixiong Zhang

    (State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining & Technology, Xuzhou 221116, China)

  • Nan Zhou

    (State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining & Technology, Xuzhou 221116, China)

  • Junli Chen

    (State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining & Technology, Xuzhou 221116, China)

Abstract

The enhancement of lump coal percentage (LCP) is of great significance for most aging mines to achieve the production reduction and quality improvement. In order to enhance the LCP of hard coal seam in fully mechanized mining face and prolong the service life of aging mines, this paper puts forward the technological path of LCP enhancement using high-pressure pulsed hydraulic fracturing (HPPHF) based on the detailed analysis of the main factors controlling LCP. By analyzing the correlation between coal fracturing and LCP, the enhancement mechanism of LCP through HPPHF was concluded. Using the extended finite element method, a fluid–solid coupling numerical model of high-pressure pulsed water injection into coal seam was established, and effects of the fracturing method, pulse amplitude, pulse frequency, and water injection pressure on fracturing performance were assessed. Simulation results demonstrate that HPPHF can effectively reduce the required maximum pressure in fracturing, thus providing a higher percentage of coal lumps with lower energy consumption through the repeated pulsed loading of coal masses. Variations in pulsed pressure amplitude and frequency, as well as water injection pressure were positively correlated with fracturing performance. By their effect on the fracturing performance, we found that water injection pressure had the greatest influence, and the pulse amplitude and frequency had similar effects. At the same time, “high amplitude-high frequency” and “high amplitude-low frequency” had characteristics of short initiation time, large initiation pressure, but small fracture width, while “low amplitude-high frequency” and “low amplitude-low frequency” had characteristics of slow initiation speed, low initiation pressure, but large fracture width. Through the field test results in the fully mechanized mining face of Shichangwan Coal Mine, it was found that LCP with a diameter range of 13–100 mm was significantly enhanced by HPPHF. The present study is considered quite instrumental in providing a theoretical foundation for enhancing the LCP of hard coal seams and the sustainable development of coal mine enterprises.

Suggested Citation

  • Hao Yan & Jixiong Zhang & Nan Zhou & Junli Chen, 2019. "The Enhancement of Lump Coal Percentage by High-Pressure Pulsed Hydraulic Fracturing for Sustainable Development of Coal Mines," Sustainability, MDPI, vol. 11(10), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2731-:d:230846
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/10/2731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/10/2731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Zhan-Ming, 2014. "Inflationary effect of coal price change on the Chinese economy," Applied Energy, Elsevier, vol. 114(C), pages 301-309.
    2. Chen, Yi-Shun & Hsu, Chia-Jen & Hsiau, Shu-San & Ma, Sheng-Ming, 2017. "Clean coal technology for removal dust using moving granular bed filter," Energy, Elsevier, vol. 120(C), pages 441-449.
    3. Quangui Li & Baiquan Lin & Cheng Zhai, 2015. "A new technique for preventing and controlling coal and gas outburst hazard with pulse hydraulic fracturing: a case study in Yuwu coal mine, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2931-2946, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Yanliang & Long, Ruyin & Zhang, Linling & Wu, Meifen, 2020. "Dynamic analysis of the sustainable development capability of coal cities," Resources Policy, Elsevier, vol. 66(C).
    2. Li, Jianglong & Xie, Chunping & Long, Houyin, 2019. "The roles of inter-fuel substitution and inter-market contagion in driving energy prices: Evidences from China’s coal market," Energy Economics, Elsevier, vol. 84(C).
    3. Guangyong Zhang & Lixin Tian & Min Fu & Bingyue Wan & Wenbin Zhang, 2020. "Research on the Transmission Ability of China’s Thermal Coal Price Information Based on Directed Limited Penetrable Interdependent Network," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
    4. Nie, Pu-yan & Yang, Yong-cong, 2016. "Effects of energy price fluctuations on industries with energy inputs: An application to China," Applied Energy, Elsevier, vol. 165(C), pages 329-334.
    5. Fangtian Wang & Cun Zhang & Ningning Liang, 2017. "Gas Permeability Evolution Mechanism and Comprehensive Gas Drainage Technology for Thin Coal Seam Mining," Energies, MDPI, vol. 10(9), pages 1-18, September.
    6. Gu, Fu & Wang, Jiqiang & Guo, Jianfeng & Fan, Ying, 2020. "How the supply and demand of steam coal affect the investment in clean energy industry? Evidence from China," Resources Policy, Elsevier, vol. 69(C).
    7. Ullah, Habib & Liu, Guijian & Yousaf, Balal & Ali, Muhammad Ubaid & Abbas, Qumber & Zhou, Chuncai & Rashid, Audil, 2018. "Hydrothermal dewatering of low-rank coals: Influence on the properties and combustion characteristics of the solid products," Energy, Elsevier, vol. 158(C), pages 1192-1203.
    8. Xu, Mengjie & Li, Xiang & Li, Qianwen & Sun, Chuanwang, 2024. "LNBi-GRU model for coal price prediction and pattern recognition analysis," Applied Energy, Elsevier, vol. 365(C).
    9. Zhang, Yan & Xu, Yushi & Zhu, Xintong & Huang, Jionghao, 2024. "Coal price shock propagation through sectoral financial interconnectedness in China's stock market: Quantile coherency network modelling and shock decomposition analysis," Journal of Commodity Markets, Elsevier, vol. 34(C).
    10. Mingze Liu & Guang Zhang & Guogang Gou & Bing Bai & Shaobin Hu & Xiaochun Li, 2018. "Experimental and theoretical study on the effect of unsteady flow on the fracturing pressure in hydraulic fracturing test," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1137-1151, February.
    11. Wang, Brian Yutao & Li, Shuo & Liu, Guangqiang & Yang, Zhiqing, 2021. "Running out of energy: The Price effect of energy deficiency," Energy Economics, Elsevier, vol. 100(C).
    12. Sibande, Xolani & Demirer, Riza & Balcilar, Mehmet & Gupta, Rangan, 2023. "On the pricing effects of bitcoin mining in the fossil fuel market: The case of coal," Resources Policy, Elsevier, vol. 85(PB).
    13. Wang, Tiantian & Wu, Fei & Dickinson, David & Zhao, Wanli, 2024. "Energy price bubbles and extreme price movements: Evidence from China's coal market," Energy Economics, Elsevier, vol. 129(C).
    14. Chao Xu & Haoshi Sun & Kai Wang & Liangliang Qin & Chaofei Guo & Zhijie Wen, 2021. "Effect of low‐level roadway tunneling on gas drainage for underlying coal seam mining: Numerical analysis and field application," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(4), pages 780-794, August.
    15. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
    16. Fan, Xinghua & Wang, Li & Li, Shasha, 2016. "Predicting chaotic coal prices using a multi-layer perceptron network model," Resources Policy, Elsevier, vol. 50(C), pages 86-92.
    17. Shiqiu Zhu & Yuanying Chi & Kaiye Gao & Yahui Chen & Rui Peng, 2022. "Analysis of Influencing Factors of Thermal Coal Price," Energies, MDPI, vol. 15(15), pages 1-16, August.
    18. Jianguo Du & Francis Tang Dabuo & Beverlley Madzikanda & Kofi Baah Boamah, 2021. "The Influence of R&D in Mining on Sustainable Development in China," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    19. Bertrand Rioux, Philipp Galkin, Frederic Murphy, and Axel Pierru, 2017. "How do Price Caps in Chinas Electricity Sector Impact the Economics of Coal, Power and Wind? Potential Gains from Reforms," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    20. Yiyu Lu & Shaojie Zuo & Zhaolong Ge & Songqiang Xiao & Yugang Cheng, 2016. "Experimental Study of Crack Initiation and Extension Induced by Hydraulic Fracturing in a Tree-Type Borehole Array," Energies, MDPI, vol. 9(7), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2731-:d:230846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.