IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v90y2018i3d10.1007_s11069-017-3088-8.html
   My bibliography  Save this article

Experimental and theoretical study on the effect of unsteady flow on the fracturing pressure in hydraulic fracturing test

Author

Listed:
  • Mingze Liu

    (Wuhan University of Technology)

  • Guang Zhang

    (Wuhan University of Technology)

  • Guogang Gou

    (Changsha Engineering and Research Institute Ltd. of Nonferrous Metallurgy)

  • Bing Bai

    (Chinese Academy of Sciences)

  • Shaobin Hu

    (Hohai University)

  • Xiaochun Li

    (Chinese Academy of Sciences)

Abstract

Reasonable determination of formation fracturing pressure concerns the stable operation of underground fluid injection projects. In this work, we studied the effect of unsteady flow on fracturing pressure. Hydraulic fracturing tests on low permeable sandstone were conducted with the injection rate between 0.1 and 2.0 ml/min. Then, the fracturing pressure prediction models for hollow cylinder under both unsteady flow and steady flow conditions were deduced. Finally, the effect of unsteady flow on the fracturing pressure was studied based on the experimental result and several influence factors. It was shown that fracturing pressure increased with the elevated pressurization rate in the tests, while the slope of the variation curve decreases. The model considering unsteady flow can reflect the variation tendency of fracturing pressures in experiments, while fracturing pressures from the model considering steady flow are invariant with different pressurization rates. Fracturing pressure decreases with the elevated rock permeability and increases with the elevated fluid viscosity, and these two effects are actually generated by the unsteady flow. Whether to consider the unsteady flow has no significant influence on the effect of rock tensile strength on fracturing pressure when the tensile strength is very low. However, when the tensile strength is high, the effect of unsteady flow cannot be neglected.

Suggested Citation

  • Mingze Liu & Guang Zhang & Guogang Gou & Bing Bai & Shaobin Hu & Xiaochun Li, 2018. "Experimental and theoretical study on the effect of unsteady flow on the fracturing pressure in hydraulic fracturing test," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1137-1151, February.
  • Handle: RePEc:spr:nathaz:v:90:y:2018:i:3:d:10.1007_s11069-017-3088-8
    DOI: 10.1007/s11069-017-3088-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-3088-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-3088-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaochen Wei & Qi Li & Xiaying Li & Yankun Sun, 2016. "Impact indicators for caprock integrity and induced seismicity in CO 2 geosequestration: insights from uncertainty analyses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 1-21, March.
    2. Quangui Li & Baiquan Lin & Cheng Zhai, 2015. "A new technique for preventing and controlling coal and gas outburst hazard with pulse hydraulic fracturing: a case study in Yuwu coal mine, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2931-2946, February.
    3. Xiaochen Wei & Qi Li & Xiaying Li & Yankun Sun, 2016. "Impact indicators for caprock integrity and induced seismicity in CO2 geosequestration: insights from uncertainty analyses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Xu & Haoshi Sun & Kai Wang & Liangliang Qin & Chaofei Guo & Zhijie Wen, 2021. "Effect of low‐level roadway tunneling on gas drainage for underlying coal seam mining: Numerical analysis and field application," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(4), pages 780-794, August.
    2. Hao Yan & Jixiong Zhang & Nan Zhou & Junli Chen, 2019. "The Enhancement of Lump Coal Percentage by High-Pressure Pulsed Hydraulic Fracturing for Sustainable Development of Coal Mines," Sustainability, MDPI, vol. 11(10), pages 1-14, May.
    3. Qingying Cheng & Bingxiang Huang & Luying Shao & Xinglong Zhao & Shuliang Chen & Haoze Li & Changwei Wang, 2020. "Combination of Pre-Pulse and Constant Pumping Rate Hydraulic Fracturing for Weakening Hard Coal and Rock Mass," Energies, MDPI, vol. 13(21), pages 1-22, October.
    4. Fangtian Wang & Cun Zhang & Ningning Liang, 2017. "Gas Permeability Evolution Mechanism and Comprehensive Gas Drainage Technology for Thin Coal Seam Mining," Energies, MDPI, vol. 10(9), pages 1-18, September.
    5. Yiyu Lu & Shaojie Zuo & Zhaolong Ge & Songqiang Xiao & Yugang Cheng, 2016. "Experimental Study of Crack Initiation and Extension Induced by Hydraulic Fracturing in a Tree-Type Borehole Array," Energies, MDPI, vol. 9(7), pages 1-15, June.
    6. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:90:y:2018:i:3:d:10.1007_s11069-017-3088-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.