IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i9p3021-d165718.html
   My bibliography  Save this article

Applying Soil Health Indicators to Encourage Sustainable Soil Use: The Transition from Scientific Study to Practical Application

Author

Listed:
  • Bryan S. Griffiths

    (SRUC, Crop and Soil Systems Research Group, West Mains Road, Edinburgh EH9 3JG, UK)

  • Jack Faber

    (Wageningen Environmental Research, 6700 AA Wageningen, The Netherlands)

  • Jaap Bloem

    (Wageningen Environmental Research, 6700 AA Wageningen, The Netherlands)

Abstract

The sustainable management of land for agricultural production has at its core a healthy soil, because this reduces the quantity of external inputs, reduces losses of nutrients to the environment, maximises the number of days when the soil can be worked, and has a pore structure that maximises both the retention of water in dry weather and drainage of water in wet weather. Soil health encompasses the physical, chemical, and biological features, but the use of biological indicators is the least well advanced. Sustainability also implies the balanced provision of ecosystem services, which can be more difficult to measure than single indicators. We describe how the key components of the soil food web contribute to a healthy soil and give an overview of the increasing number of scientific studies that have examined the use of biological indicators. A case study is made of the ecosystem service of water infiltration, which is quite an undertaking to measure directly, but which can be inferred from earthworm abundance and biodiversity which is relatively easy to measure. This highlights the difficulty of putting any monitoring scheme into practice and we finish by providing the considerations in starting a new soil health monitoring service in the UK and in maintaining biological monitoring in The Netherlands.

Suggested Citation

  • Bryan S. Griffiths & Jack Faber & Jaap Bloem, 2018. "Applying Soil Health Indicators to Encourage Sustainable Soil Use: The Transition from Scientific Study to Practical Application," Sustainability, MDPI, vol. 10(9), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3021-:d:165718
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/9/3021/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/9/3021/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cynthia M. Kallenbach & Serita D. Frey & A. Stuart Grandy, 2016. "Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jana Chumchalová & Martin Kubal, 2020. "MPN Drop Agar Method for Determination of Heterotrophic Microorganisms in Soil and Water Samples Using Tissue Plate as a Carrier," Sustainability, MDPI, vol. 12(19), pages 1-8, October.
    2. Johannes Rüdisser & Erich Tasser & Thomas Peham & Erwin Meyer & Ulrike Tappeiner, 2020. "Hidden Engineers and Service Providers: Earthworms in Agricultural Land-Use Types of South Tyrol, Italy," Sustainability, MDPI, vol. 13(1), pages 1-14, December.
    3. Zhihong Zhang & Yali Wu & Vi Khanh Truong & Dongguang Zhang, 2021. "Earthworm ( Eisenia fetida ) Mucus Inspired Bionic Fertilizer to Stimulate Maize ( Zea mays L.) Growth," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    4. Toru Hamamoto & Yoshitaka Uchida, 2019. "The Role of Different Earthworm Species ( Metaphire Hilgendorfi and Eisenia Fetida ) on CO 2 Emissions and Microbial Biomass during Barley Decomposition," Sustainability, MDPI, vol. 11(23), pages 1-10, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaos V. Paranychianakis & Giorgos Giannakis & Daniel Moraetis & Vasileios A. Tzanakakis & Nikolaos P. Nikolaidis, 2021. "Crop Litter Has a Strong Effect on Soil Organic Matter Sequestration in Semi-Arid Environments," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    2. Agata Novara & Valentina Catania & Marco Tolone & Luciano Gristina & Vito Armando Laudicina & Paola Quatrini, 2020. "Cover Crop Impact on Soil Organic Carbon, Nitrogen Dynamics and Microbial Diversity in a Mediterranean Semiarid Vineyard," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    3. Biyensa Gurmessa, 2021. "Soil acidity challenges and the significance of liming and organic amendments in tropical agricultural lands with reference to Ethiopia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 77-99, January.
    4. Bardsley, Nicholas, 2021. "Recent Advances in Biofarming Show Potential for Rapid Soil Restoration, with Carbon, Health and Livelihoods Benefits," MPRA Paper 121184, University Library of Munich, Germany.
    5. Luiz A. Domeignoz-Horta & Seraina L. Cappelli & Rashmi Shrestha & Stephanie Gerin & Annalea K. Lohila & Jussi Heinonsalo & Daniel B. Nelson & Ansgar Kahmen & Pengpeng Duan & David Sebag & Eric Verrecc, 2024. "Plant diversity drives positive microbial associations in the rhizosphere enhancing carbon use efficiency in agricultural soils," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Timothy E. Crews & Brian E. Rumsey, 2017. "What Agriculture Can Learn from Native Ecosystems in Building Soil Organic Matter: A Review," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    7. Matthew E. Craig & Kevin M. Geyer & Katilyn V. Beidler & Edward R. Brzostek & Serita D. Frey & A. Stuart Grandy & Chao Liang & Richard P. Phillips, 2022. "Fast-decaying plant litter enhances soil carbon in temperate forests but not through microbial physiological traits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Katerina Georgiou & Robert B. Jackson & Olga Vindušková & Rose Z. Abramoff & Anders Ahlström & Wenting Feng & Jennifer W. Harden & Adam F. A. Pellegrini & H. Wayne Polley & Jennifer L. Soong & William, 2022. "Global stocks and capacity of mineral-associated soil organic carbon," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Akhmad Mustafa & Mudian Paena & Admi Athirah & Erna Ratnawati & Ruzkiah Asaf & Hidayat Suryanto Suwoyo & Sahabuddin Sahabuddin & Erfan Andi Hendrajat & Kamaruddin Kamaruddin & Early Septiningsih & And, 2022. "Temporal and Spatial Analysis of Coastal Water Quality to Support Application of Whiteleg Shrimp Litopenaeus vannamei Intensive Pond Technology," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    10. Jifu Li & Guoyu Gan & Xi Chen & Jialong Zou, 2021. "Effects of Long-Term Straw Management and Potassium Fertilization on Crop Yield, Soil Properties, and Microbial Community in a Rice–Oilseed Rape Rotation," Agriculture, MDPI, vol. 11(12), pages 1-18, December.
    11. Binod Ghimire & Rajan Ghimire & Dawn VanLeeuwen & Abdel Mesbah, 2017. "Cover Crop Residue Amount and Quality Effects on Soil Organic Carbon Mineralization," Sustainability, MDPI, vol. 9(12), pages 1-14, December.
    12. Belenguer-Manzanedo, María & Alcaraz, Carles & Martínez-Eixarch, Maite & Camacho, Antonio & Morris, James T. & Ibáñez, Carles, 2023. "Modeling soil accretion and carbon accumulation in deltaic rice fields," Ecological Modelling, Elsevier, vol. 484(C).
    13. Guopeng Liang & John Stark & Bonnie Grace Waring, 2023. "Mineral reactivity determines root effects on soil organic carbon," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3021-:d:165718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.