IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i6p2081-d153297.html
   My bibliography  Save this article

The Promotion of Environmental Management in the South Korean Health Sector—Case Study

Author

Listed:
  • Jong-Ryool Kim

    (Ministry of Environment, Sejong City 30103, Korea)

  • Eui-Chan Jeon

    (Department of Environment & Energy, Sejong University, Seoul 05006, Korea)

  • Seongmoon Cho

    (Korea Environmental Industry & Technology Institute, Seoul 03367, Korea)

  • Hana Kim

    (Corporate Course for Climate Change, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea)

Abstract

Because of the comprehensiveness and urgency of environmental challenges, every stakeholder needs to be engaged in reducing environmental impacts. The healthcare sector has rarely been studied, despite its intense effects on the environment, particularly through generating various forms of hazardous waste and intensively consuming energy and water. Many healthcare facilities exist in South Korea, and every citizen frequently visits hospitals thanks to the convenient system. To reduce the environmental impacts of the healthcare sector, the South Korean government has implemented various policy measures aimed at promoting environmental management in that sector. This study evaluated the eco-efficiencies of 21 hospitals from 2012 to 2015 using data envelopment assessment (DEA), used the analytical hierarchy process (AHP) to analyze hospital staff members’ answers to a questionnaire asking about the relative importance and performance of individual environmental management tasks, and also identified environmental management tasks that should be prioritized by building an importance-performance analysis (IPA) matrix using those questionnaire responses. This study found that eco-efficiencies have improved during the period, and that mandatory policy measures were more effective than voluntary agreements for improving eco-efficiency. This implies that rigorous reporting and monitoring should be implemented along with any voluntary agreement. In addition, this study found that the top priorities are “establishment of vision and strategy for environmental management” and “organization of task team for environmental management and task assignment”. This shows the necessity of additional policy measures, such as training or consulting to promote the priorities. In addition to policy recommendations for diffusing environmental management in the South Korean healthcare sector, the methodological approach sheds light for researchers interested in environmental management in the healthcare sector because previous studies depended on qualitative approaches, particularly case studies.

Suggested Citation

  • Jong-Ryool Kim & Eui-Chan Jeon & Seongmoon Cho & Hana Kim, 2018. "The Promotion of Environmental Management in the South Korean Health Sector—Case Study," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:2081-:d:153297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/6/2081/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/6/2081/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christin Seifert, 2018. "The Barriers for Voluntary Environmental Management Systems—The Case of EMAS in Hospitals," Sustainability, MDPI, vol. 10(5), pages 1-19, May.
    2. Thomas Hale, 2016. "“All Hands on Deck”: The Paris Agreement and Nonstate Climate Action," Global Environmental Politics, MIT Press, vol. 16(3), pages 12-22, August.
    3. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Sever, Ivan, 2015. "Importance-performance analysis: A valid management tool?," Tourism Management, Elsevier, vol. 48(C), pages 43-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szabolcs Nagy & Mariann Veresne Somosi, 2020. "Students’ Perceptions of Sustainable Universities in Hungary: An Importance-Performance Analysis," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 22(54), pages 496-496, April.
    2. Fengyi Lin & Sheng-Wei Lin & Wen-Min Lu, 2018. "Sustainability Assessment of Taiwan’s Semiconductor Industry: A New Hybrid Model Using Combined Analytic Hierarchy Process and Two-Stage Additive Network Data Envelopment Analysis," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    3. Ana Fonseca & Isabel Abreu & Maria João Guerreiro & Cristina Abreu & Ricardo Silva & Nelson Barros, 2018. "Indoor Air Quality and Sustainability Management—Case Study in Three Portuguese Healthcare Units," Sustainability, MDPI, vol. 11(1), pages 1-14, December.
    4. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    5. Ho, Foo Nin & Huang, Chin-wei, 2020. "The interdependencies of marketing capabilities and operations efficiency in hospitals," Journal of Business Research, Elsevier, vol. 113(C), pages 337-347.
    6. Cristina López & Rocío Ruíz-Benítez & Carmen Vargas-Machuca, 2019. "On the Environmental and Social Sustainability of Technological Innovations in Urban Bus Transport: The EU Case," Sustainability, MDPI, vol. 11(5), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, March.
    2. Alperovych, Yan & Hübner, Georges & Lobet, Fabrice, 2015. "How does governmental versus private venture capital backing affect a firm's efficiency? Evidence from Belgium," Journal of Business Venturing, Elsevier, vol. 30(4), pages 508-525.
    3. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    4. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    5. Ruiqing Yuan & Xiangyang Xu & Yanli Wang & Jiayi Lu & Ying Long, 2024. "Evaluating Carbon-Emission Efficiency in China’s Construction Industry: An SBM-Model Analysis of Interprovincial Building Heating," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    6. Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & de Pinho Matos, Giordano Bruno Braz, 2015. "Statistical evaluation of Data Envelopment Analysis versus COLS Cobb–Douglas benchmarking models for the 2011 Brazilian tariff revision," Socio-Economic Planning Sciences, Elsevier, vol. 49(C), pages 47-60.
    7. Ahmad, Usman, 2011. "Financial Reforms and Banking Efficiency: Case of Pakistan," MPRA Paper 34220, University Library of Munich, Germany.
    8. Ashrafi, Ali & Seow, Hsin-Vonn & Lee, Lai Soon & Lee, Chew Ging, 2013. "The efficiency of the hotel industry in Singapore," Tourism Management, Elsevier, vol. 37(C), pages 31-34.
    9. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    10. António Afonso & Ana Patricia Montes & José M. Domínguez, 2024. "Measuring Tax Burden Efficiency in OECD Countries: An International Comparison," CESifo Working Paper Series 11333, CESifo.
    11. Andreas Dellnitz & Andreas Kleine & Madjid Tavana, 2024. "An integrated data envelopment analysis and regression tree method for new product price estimation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1189-1211, December.
    12. Jahangoshai Rezaee, Mustafa & Jozmaleki, Mehrdad & Valipour, Mahsa, 2018. "Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 78-93.
    13. Suhyeon Han & Shinyoung Park & Sejin An & Wonjun Choi & Mina Lee, 2023. "Research on Analyzing the Efficiency of R&D Projects for Climate Change Response Using DEA–Malmquist," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    14. Chenini Hajer & Jarboui Anis, 2018. "Analysis of the Impact of Governance on Bank Performance: Case of Commercial Tunisian Banks," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(3), pages 871-895, September.
    15. Chai, Naijie & Zhou, Wenliang & Hu, Xinlei, 2022. "Safety evaluation of urban rail transit operation considering uncertainty and risk preference: A case study in China," Transport Policy, Elsevier, vol. 125(C), pages 267-288.
    16. Zanella, Andreia & Camanho, Ana S. & Dias, Teresa G., 2015. "Undesirable outputs and weighting schemes in composite indicators based on data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 245(2), pages 517-530.
    17. Ravelojaona, Paola, 2019. "On constant elasticity of substitution – Constant elasticity of transformation Directional Distance Functions," European Journal of Operational Research, Elsevier, vol. 272(2), pages 780-791.
    18. Hu, Jin-Li & Wang, Shih-Chuan & Yeh, Fang-Yu, 2006. "Total-factor water efficiency of regions in China," Resources Policy, Elsevier, vol. 31(4), pages 217-230, December.
    19. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    20. Keh, Hean Tat & Chu, Singfat, 2003. "Retail productivity and scale economies at the firm level: a DEA approach," Omega, Elsevier, vol. 31(2), pages 75-82, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:2081-:d:153297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.