IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i6p2077-d153246.html
   My bibliography  Save this article

Suitability of Different Agricultural and Urban Organic Wastes as Feedstocks for the Production of Biochar—Part 2: Agronomical Evaluation as Soil Amendment

Author

Listed:
  • Inés López-Cano

    (Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura, CSIC, P.O. Box 4195, 30080 Murcia, Spain)

  • María Luz Cayuela

    (Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura, CSIC, P.O. Box 4195, 30080 Murcia, Spain)

  • María Sánchez-García

    (Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura, CSIC, P.O. Box 4195, 30080 Murcia, Spain)

  • Miguel A. Sánchez-Monedero

    (Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura, CSIC, P.O. Box 4195, 30080 Murcia, Spain)

Abstract

The recycling of organic wastes in agriculture contributes to a circular economy by returning to the soil nutrients and reducing the need of mineral-based fertilisers. An agronomical and environmental evaluation of a series of biochars prepared from a range of urban and agricultural wastes was performed by soil incubation experiments and pot trials. The impact of biochar addition (alone, or in combination with either mineral or organic fertiliser) on soil N, P and micronutrients was studied, as well as the potential limitations for their agricultural use (associated to phytotoxicity and presence of potentially toxic metals). The type and origin of feedstock only had a minor impact on the response of biochar in soil and its interaction with the most important nutrient cycles. The presence of ashes in biochars prepared from urban and pre-treated organic wastes caused an increase in the availability of N and P in soil, compared to raw lignocellulosic biochar. All tested biochars exhibited favourable properties as soil amendments and no phytotoxic effects or negative impacts on soil nutrient dynamics were observed during the soil incubation experiments. Their agricultural use is only limited by the presence of potentially toxic metals in biochars prepared from feedstocks of urban origins.

Suggested Citation

  • Inés López-Cano & María Luz Cayuela & María Sánchez-García & Miguel A. Sánchez-Monedero, 2018. "Suitability of Different Agricultural and Urban Organic Wastes as Feedstocks for the Production of Biochar—Part 2: Agronomical Evaluation as Soil Amendment," Sustainability, MDPI, vol. 10(6), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:2077-:d:153246
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/6/2077/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/6/2077/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Inés López-Cano & María L. Cayuela & Claudio Mondini & Chibi A. Takaya & Andrew B. Ross & Miguel A. Sánchez-Monedero, 2018. "Suitability of Different Agricultural and Urban Organic Wastes as Feedstocks for the Production of Biochar—Part 1: Physicochemical Characterisation," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María Videgain & Joan J. Manyà & Mariano Vidal & Eva Cristina Correa & Belén Diezma & Francisco Javier García-Ramos, 2021. "Influence of Feedstock and Final Pyrolysis Temperature on Breaking Strength and Dust Production of Wood-Derived Biochars," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    2. Ajwal Dsouza & Gordon W. Price & Mike Dixon & Thomas Graham, 2021. "A Conceptual Framework for Incorporation of Composting in Closed-Loop Urban Controlled Environment Agriculture," Sustainability, MDPI, vol. 13(5), pages 1-27, February.
    3. Istvan Bacskai & Viktor Madar & Csaba Fogarassy & Laszlo Toth, 2019. "Modeling of Some Operating Parameters Required for the Development of Fixed Bed Small Scale Pyrolysis Plant," Resources, MDPI, vol. 8(2), pages 1-15, April.
    4. Luca Adami & Marco Schiavon, 2021. "From Circular Economy to Circular Ecology: A Review on the Solution of Environmental Problems through Circular Waste Management Approaches," Sustainability, MDPI, vol. 13(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajwal Dsouza & Gordon W. Price & Mike Dixon & Thomas Graham, 2021. "A Conceptual Framework for Incorporation of Composting in Closed-Loop Urban Controlled Environment Agriculture," Sustainability, MDPI, vol. 13(5), pages 1-27, February.
    2. Daya Shankar Pandey & Giannis Katsaros & Christian Lindfors & James J. Leahy & Savvas A. Tassou, 2019. "Fast Pyrolysis of Poultry Litter in a Bubbling Fluidised Bed Reactor: Energy and Nutrient Recovery," Sustainability, MDPI, vol. 11(9), pages 1-17, May.
    3. María Videgain & Joan J. Manyà & Mariano Vidal & Eva Cristina Correa & Belén Diezma & Francisco Javier García-Ramos, 2021. "Influence of Feedstock and Final Pyrolysis Temperature on Breaking Strength and Dust Production of Wood-Derived Biochars," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    4. Shakib Alghashm & Shiying Qian & Yinfeng Hua & Jian Wu & Haitao Zhang & Weihua Chen & Guoqing Shen, 2018. "Properties of Biochar from Anaerobically Digested Food Waste and Its Potential Use in Phosphorus Recovery and Soil Amendment," Sustainability, MDPI, vol. 10(12), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:2077-:d:153246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.