IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i4p1253-d142052.html
   My bibliography  Save this article

Study of the Competitiveness of Quanzhou Port on the Belt and Road in China Based on a Fuzzy-AHP and ELECTRE III Model

Author

Listed:
  • Tielin Gao

    (School of Business Administration, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea)

  • Sanggyun Na

    (School of Business Administration, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea)

  • Xiaohan Dang

    (School of Business Administration, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea)

  • Yongli Zhang

    (School of Business Administration, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea
    School of Management Science and Engineering, Hebei GEO University, Shijiazhuang 050031, China)

Abstract

With the establishment of the Belt and Road national strategy, Quanzhou Port is a significant development opportunity. Quanzhou Port is the origin of the 21st century Maritime Silk Road and part of the Belt and Road, but as a pioneer project of the Maritime Silk Road and the main port in the Belt and Road strategy, its development has encountered some challenges and problems. Hence, this paper aims to evaluate the competitiveness of Quanzhou Port based on the criteria selected by experts and corresponding improvement suggestions are put forward for its weaknesses. Using fuzzy-AHP and ELECTRE III, port competitiveness is evaluated according to the total weights obtained based on the different criteria used. The key criteria consist of six factors (port size, port location, hinterland economy, port costs, operations management and growth potential) that are divided into 18 sub-criteria. Five competing ports were selected with respect to geographical proximity. The order of ranking according to ELECTRE III are as follows: Kaohsiung Port, Xiamen Port, Fuzhou Port, Taichug Port and Quanzhou Port. The findings show that the port of Quanzhou appears last in the ordering sequence, resulting in a need for integrative approaches to promote its competitiveness. Compared with competitive ports, Quanzhou Port has relatively weak overall infrastructure and relatively high port costs, which leads to a lack of obvious flow of port materials and a decrease in professional unloading services. Particularly in hinterland port economies, the industrial structure is extensive and backward. Hence, the question of how to achieve a green transformation of the manufacturing industry will be important for Quanzhou Port. This paper points out directions for the future development of Quanzhou Port and applies comprehensive evaluation methods, namely fuzzy-AHP and ELECTRE III.

Suggested Citation

  • Tielin Gao & Sanggyun Na & Xiaohan Dang & Yongli Zhang, 2018. "Study of the Competitiveness of Quanzhou Port on the Belt and Road in China Based on a Fuzzy-AHP and ELECTRE III Model," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:1253-:d:142052
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/4/1253/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/4/1253/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tongzon, Jose, 2001. "Efficiency measurement of selected Australian and other international ports using data envelopment analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(2), pages 107-122, February.
    2. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2013. "Marine container terminal configurations for efficient handling of mega-containerships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 141-158.
    3. Yeo, Gi-Tae & Roe, Michael & Dinwoodie, John, 2008. "Evaluating the competitiveness of container ports in Korea and China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(6), pages 910-921, July.
    4. Huang, Yiping, 2016. "Understanding China's Belt & Road Initiative: Motivation, framework and assessment," China Economic Review, Elsevier, vol. 40(C), pages 314-321.
    5. Cavallaro, Fausto, 2010. "A comparative assessment of thin-film photovoltaic production processes using the ELECTRE III method," Energy Policy, Elsevier, vol. 38(1), pages 463-474, January.
    6. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    7. Yang, Yi-Chih & Chen, Shu-Ling, 2016. "Determinants of global logistics hub ports: Comparison of the port development policies of Taiwan, Korea, and Japan," Transport Policy, Elsevier, vol. 45(C), pages 179-189.
    8. Du, Julan & Zhang, Yifei, 2018. "Does One Belt One Road initiative promote Chinese overseas direct investment?," China Economic Review, Elsevier, vol. 47(C), pages 189-205.
    9. Govindan, Kannan & Jepsen, Martin Brandt, 2016. "ELECTRE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 250(1), pages 1-29.
    10. Ishii, Masahiro & Lee, Paul Tae-Woo & Tezuka, Koichiro & Chang, Young-Tae, 2013. "A game theoretical analysis of port competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 92-106.
    11. Lupo, Toni, 2015. "Fuzzy ServPerf model combined with ELECTRE III to comparatively evaluate service quality of international airports in Sicily," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 249-259.
    12. Tongzon, Jose L., 2009. "Port choice and freight forwarders," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 186-195, January.
    13. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore & Słowiński, Roman, 2017. "A robust ranking method extending ELECTRE III to hierarchy of interacting criteria, imprecise weights and stochastic analysis," Omega, Elsevier, vol. 73(C), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jihong & Fei, Yijie & Wan, Zheng & Yang, Zaili & Li, Haobo & Choi, Kyoung-Suk & Xie, Xiaoke, 2020. "Allometric relationship and development potential comparison of ports in a regional cluster: A case study of ports in the Pearl River Delta in China," Transport Policy, Elsevier, vol. 85(C), pages 80-90.
    2. Jiaguo Liu & Jinxia Zhou & Fan Liu & Xiaohang Yue & Yudan Kong & Xiaoye Wang, 2019. "Interaction Analysis and Sustainable Development Strategy between Port and City: The Case of Liaoning," Sustainability, MDPI, vol. 11(19), pages 1-25, September.
    3. Zhao, Deng & Zhen-fu, Li & Yu-tao, Zhou & Xiao, Chen & Shan-shan, Liang, 2020. "Measurement and spatial spillover effects of port comprehensive strength: Empirical evidence from China," Transport Policy, Elsevier, vol. 99(C), pages 288-298.
    4. Naixia Mou & Chunying Wang & Tengfei Yang & Lingxian Zhang, 2020. "Evaluation of Development Potential of Ports in the Yangtze River Delta Using FAHP-Entropy Model," Sustainability, MDPI, vol. 12(2), pages 1-24, January.
    5. Renfeng Ma & Bo Hou & Wenzhong Zhang, 2019. "Could Marine Industry Promote the Coordinated Development of Coastal Provinces in China?," Sustainability, MDPI, vol. 11(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Chenrui & Wang, Grace W.Y. & Zeng, Qingcheng, 2017. "Modelling port subsidy policies considering pricing decisions of feeder carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 99(C), pages 115-133.
    2. Liao, Huchang & Wu, Xingli & Mi, Xiaomei & Herrera, Francisco, 2020. "An integrated method for cognitive complex multiple experts multiple criteria decision making based on ELECTRE III with weighted Borda rule," Omega, Elsevier, vol. 93(C).
    3. Balci, Gökcay & Cetin, Ismail Bilge & Esmer, Soner, 2018. "An evaluation of competition and selection criteria between dry bulk terminals in Izmir," Journal of Transport Geography, Elsevier, vol. 69(C), pages 294-304.
    4. Kammoun, Rabeb & Abdennadher, Chokri, 2022. "Seaport efficiency and competitiveness in European seaports," Transport Policy, Elsevier, vol. 121(C), pages 113-124.
    5. Zeng, Qingcheng & Wang, Grace W.Y. & Qu, Chenrui & Li, Kevin X., 2018. "Impact of the Carat Canal on the evolution of hub ports under China’s Belt and Road initiative," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 117(C), pages 96-107.
    6. Mingzhu Yu & Chung-Yee Lee & James Jixian Wang, 2017. "The regional port competition with different terminal competition intensity," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 659-688, December.
    7. Damoah, Kaku Attah & Giovannetti, Giorgia & Marvasi, Enrico, 2022. "Do country centrality and similarity to China matter in the allocation of belt and road projects?," Structural Change and Economic Dynamics, Elsevier, vol. 62(C), pages 660-674.
    8. Eduardo Fernández & José Rui Figueira & Jorge Navarro, 2023. "A theoretical look at ordinal classification methods based on comparing actions with limiting boundaries between adjacent classes," Annals of Operations Research, Springer, vol. 325(2), pages 819-843, June.
    9. Krishna Chaitanya Vadlamannati & Yuanxin Li & Samuel Brazys & Alexander Dukalskis, 2019. "Building Bridges or Breaking Bonds? The Belt and Road Initiative and Foreign Aid Competition," Working Papers 201906, Geary Institute, University College Dublin.
    10. Muhammad Riaz & Wojciech Sałabun & Hafiz Muhammad Athar Farid & Nawazish Ali & Jarosław Wątróbski, 2020. "A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management," Energies, MDPI, vol. 13(9), pages 1-39, May.
    11. Zhao, Deng & Zhen-fu, Li & Yu-tao, Zhou & Xiao, Chen & Shan-shan, Liang, 2020. "Measurement and spatial spillover effects of port comprehensive strength: Empirical evidence from China," Transport Policy, Elsevier, vol. 99(C), pages 288-298.
    12. Wang, Xinchang & Meng, Qiang & Miao, Lixin, 2016. "Delimiting port hinterlands based on intermodal network flows: Model and algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 32-51.
    13. Fernández, Eduardo & Figueira, José Rui & Navarro, Jorge & Solares, Efrain, 2023. "A generalized approach to ordinal classification based on the comparison of actions with either limiting or characteristic profiles," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1309-1322.
    14. Jiannan, Cheng & feng, Lian & Zhongzhen, Yang, 2020. "Impacts of the choice habits of port users on the effects and efficiencies of port investment," Transport Policy, Elsevier, vol. 99(C), pages 203-214.
    15. R. Pelissari & M. C. Oliveira & S. Ben Amor & A. Kandakoglu & A. L. Helleno, 2020. "SMAA methods and their applications: a literature review and future research directions," Annals of Operations Research, Springer, vol. 293(2), pages 433-493, October.
    16. Yang, Dong & Li, Lu & Notteboom, Theo, 2022. "Chinese investment in overseas container terminals: The role of investor attributes in achieving a higher port competitiveness," Transport Policy, Elsevier, vol. 118(C), pages 112-122.
    17. Koffi Dumor & Li Yao, 2019. "Estimating China’s Trade with Its Partner Countries within the Belt and Road Initiative Using Neural Network Analysis," Sustainability, MDPI, vol. 11(5), pages 1-22, March.
    18. Fernández, Eduardo & Navarro, Jorge & Solares, Efrain, 2022. "A hierarchical interval outranking approach with interacting criteria," European Journal of Operational Research, Elsevier, vol. 298(1), pages 293-307.
    19. Yeo, Gi-Tae & Pak, Ji-Yeong & Yang, Zaili, 2013. "Analysis of dynamic effects on seaports adopting port security policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 285-301.
    20. Concetta Manuela La Fata & Toni Lupo & Tommaso Piazza, 2019. "Service quality benchmarking via a novel approach based on fuzzy ELECTRE III and IPA: an empirical case involving the Italian public healthcare context," Health Care Management Science, Springer, vol. 22(1), pages 106-120, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:1253-:d:142052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.