IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i4p1181-d141058.html
   My bibliography  Save this article

Operational Water Withdrawal and Consumption Factors for Electricity Generation Technology in China—A Literature Review

Author

Listed:
  • Jinjing Gao

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China)

  • Peng Zhao

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China)

  • Hongwei Zhang

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
    School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300287, China)

  • Guozhu Mao

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China)

  • Yuan Wang

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China)

Abstract

As two indispensable resources for human development, energy and water are closely related. China, as the world’s largest consumer of electricity, is also experiencing very serious water shortages. Understanding the water consumption intensity in various types of electric power production technologies according to China’s national conditions is a prerequisite for understanding the potential impact of electrical power production on water resources. Therefore, following the steps of a meta-analysis, this paper provides a literature review on operational water withdrawal and consumption factors for electricity generation technology in China. We observed that 50% of water consumption for electricity generation was for coal power, whereas there was no research on the water consumption intensity of natural gas power generation, and a shortage of studies on water intake during electrical power production. The average water consumption intensity of hydropower is the largest. The results indicate that compared with other fuel types, hydropower is not a sustainable energy with respect to water conservation, and the study of hydropower applications should be improved in China.

Suggested Citation

  • Jinjing Gao & Peng Zhao & Hongwei Zhang & Guozhu Mao & Yuan Wang, 2018. "Operational Water Withdrawal and Consumption Factors for Electricity Generation Technology in China—A Literature Review," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:1181-:d:141058
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/4/1181/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/4/1181/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xiao & Li, Hong-Yi & Deng, Zhiqun Daniel & Ringler, Claudia & Gao, Yang & Hejazi, Mohamad I. & Leung, L. Ruby, 2018. "Impacts of climate change, policy and Water-Energy-Food nexus on hydropower development," Renewable Energy, Elsevier, vol. 116(PA), pages 827-834.
    2. Jiahai Yuan & Qi Lei & Minpeng Xiong & Jingsheng Guo & Changhong Zhao, 2014. "Scenario-Based Analysis on Water Resources Implication of Coal Power in Western China," Sustainability, MDPI, vol. 6(10), pages 1-26, October.
    3. Qin, Zhangcai & Zhuang, Qianlai & Cai, Ximing & He, Yujie & Huang, Yao & Jiang, Dong & Lin, Erda & Liu, Yaling & Tang, Ya & Wang, Michael Q., 2018. "Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2387-2400.
    4. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    5. Wu, X.D. & Chen, G.Q., 2017. "Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China," Applied Energy, Elsevier, vol. 195(C), pages 125-136.
    6. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    7. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    8. Li, Xin & Feng, Kuishuang & Siu, Yim Ling & Hubacek, Klaus, 2012. "Energy-water nexus of wind power in China: The balancing act between CO2 emissions and water consumption," Energy Policy, Elsevier, vol. 45(C), pages 440-448.
    9. Guo, Mingxin & Song, Weiping & Buhain, Jeremy, 2015. "Bioenergy and biofuels: History, status, and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 712-725.
    10. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    11. Sovacool, Benjamin K. & Sovacool, Kelly E., 2009. "Identifying future electricity-water tradeoffs in the United States," Energy Policy, Elsevier, vol. 37(7), pages 2763-2773, July.
    12. Shaikh, Mohammad A. & Kucukvar, Murat & Onat, Nuri Cihat & Kirkil, Gokhan, 2017. "A framework for water and carbon footprint analysis of national electricity production scenarios," Energy, Elsevier, vol. 139(C), pages 406-421.
    13. Wang, Sicong & Wang, Shifeng, 2017. "Implications of improving energy efficiency for water resources," Energy, Elsevier, vol. 140(P1), pages 922-928.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yechennan Peng & Hossein Azadi & Liang (Emlyn) Yang & Jürgen Scheffran & Ping Jiang, 2022. "Assessing the Siting Potential of Low-Carbon Energy Power Plants in the Yangtze River Delta: A GIS-Based Approach," Energies, MDPI, vol. 15(6), pages 1-20, March.
    2. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Díaz-Trujillo, Luis Alberto & González-Avilés, Mauricio & Fuentes-Cortés, Luis Fabián, 2024. "Soft-clustering for conflict management around the water-energy-carbon nexus and energy security," Applied Energy, Elsevier, vol. 360(C).
    4. Yang, Qing & Huang, Tianyue & Wang, Saige & Li, Jiashuo & Dai, Shaoqing & Wright, Sebastian & Wang, Yuxuan & Peng, Huaiwu, 2019. "A GIS-based high spatial resolution assessment of large-scale PV generation potential in China," Applied Energy, Elsevier, vol. 247(C), pages 254-269.
    5. Diego Sesma-Martín, 2020. "Cooling Water: A Source of Conflict in Spain, 1970–1980," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
    6. Jun Liu & Yuyan Zhou & Lihua Chen & Lichuan Wang, 2023. "Assessing the Impact of Climate Change on Water Usage in Typical Industrial Enterprises," Sustainability, MDPI, vol. 15(13), pages 1-18, June.
    7. Linghao Meng & Jusen Asuka, 2022. "Impacts of Energy Transition on Life Cycle Carbon Emission and Water Consumption in Japan’s Electric Sector," Sustainability, MDPI, vol. 14(9), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chu, Chu & Ritter, William & Sun, Xiaohui, 2019. "Spatial variances of water-energy nexus in China and its implications for provincial resource interdependence," Energy Policy, Elsevier, vol. 125(C), pages 487-502.
    2. David Font Vivanco & Ranran Wang & Edgar Hertwich, 2018. "Nexus Strength: A Novel Metric for Assessing the Global Resource Nexus," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1473-1486, December.
    3. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.
    4. Zhang, Xiaohong & Qi, Yan & Wang, Yanqing & Wu, Jun & Lin, Lili & Peng, Hong & Qi, Hui & Yu, Xiaoyu & Zhang, Yanzong, 2016. "Effect of the tap water supply system on China's economy and energy consumption, and its emissions’ impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 660-671.
    5. Jin, Yi & Tang, Xu & Feng, Cuiyang & Höök, Mikael, 2017. "Energy and water conservation synergy in China: 2007–2012," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 206-215.
    6. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    7. Shang, Yizi & Hei, Pengfei & Lu, Shibao & Shang, Ling & Li, Xiaofei & Wei, Yongping & Jia, Dongdong & Jiang, Dong & Ye, Yuntao & Gong, Jiaguo & Lei, Xiaohui & Hao, Mengmeng & Qiu, Yaqin & Liu, Jiahong, 2018. "China’s energy-water nexus: Assessing water conservation synergies of the total coal consumption cap strategy until 2050," Applied Energy, Elsevier, vol. 210(C), pages 643-660.
    8. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    9. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Wan, Liyang & Wang, Can & Cai, Wenjia, 2016. "Impacts on water consumption of power sector in major emitting economies under INDC and longer term mitigation scenarios: An input-output based hybrid approach," Applied Energy, Elsevier, vol. 184(C), pages 26-39.
    11. Cai, Yanpeng & Cai, Jianying & Xu, Linyu & Tan, Qian & Xu, Qiao, 2019. "Integrated risk analysis of water-energy nexus systems based on systems dynamics, orthogonal design and copula analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 125-137.
    12. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    13. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    14. Fuquan Zhao & Feiqi Liu & Han Hao & Zongwei Liu, 2020. "Carbon Emission Reduction Strategy for Energy Users in China," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    15. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
    16. Yiyi Zhang & Shengren Hou & Jiefeng Liu & Hanbo Zheng & Jiaqi Wang & Chaohai Zhang, 2020. "Evolution of Virtual Water Transfers in China’s Provincial Grids and Its Driving Analysis," Energies, MDPI, vol. 13(2), pages 1-19, January.
    17. Cano-Rodríguez, Sara & Rubio-Varas, Mar & Sesma-Martín, Diego, 2022. "At the crossroad between green and thirsty: Carbon emissions and water consumption of Spanish thermoelectricity generation, 1969–2019," Ecological Economics, Elsevier, vol. 195(C).
    18. David Font Vivanco & Ranran Wang & Sebastiaan Deetman & Edgar Hertwich, 2019. "Unraveling the Nexus: Exploring the Pathways to Combined Resource Use," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 241-252, February.
    19. Wu, X.D. & Chen, G.Q., 2017. "Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China," Applied Energy, Elsevier, vol. 195(C), pages 125-136.
    20. Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:1181-:d:141058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.