IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i2p316-d128830.html
   My bibliography  Save this article

Comparison of Modeling Grassland Degradation with and without Considering Localized Spatial Associations in Vegetation Changing Patterns

Author

Listed:
  • Yuwei Wang

    (School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan 430079, China)

  • Zhenyu Wang

    (School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan 430079, China)

  • Ruren Li

    (Shenyang Construction Engineering University, Shenyang 110044, China)

  • Xiaoliang Meng

    (School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan 430079, China)

  • Xingjun Ju

    (Shenhua Baorixile Energy Company Limited, Hulunbuir 021025, China)

  • Yuguo Zhao

    (Shenhua Baorixile Energy Company Limited, Hulunbuir 021025, China)

  • Zongyao Sha

    (School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan 430079, China)

Abstract

Grassland ecosystems worldwide are confronted with degradation. It is of great importance to understand long-term trajectory patterns of grassland vegetation by advanced analytical models. This study proposes a new approach called a binary logistic regression model with neighborhood interactions, or BLR-NIs, which is based on binary logistic regression (BLR), but fully considers the spatio-temporally localized spatial associations or characterization of neighborhood interactions (NIs) in the patterns of grassland vegetation. The BLR-NIs model was applied to a modeled vegetation degradation of grasslands in the Xilin river basin, Inner Mongolia, China. Residual trend analysis on the normalized difference vegetation index (RESTREND-NDVI), which excluded the climatic impact on vegetation dynamics, was adopted as a preprocessing step to derive three human-induced trajectory patterns (vegetation degradation, vegetation recovery, and no significant change in vegetation) during two consecutive periods, T 1 (2000–2008) and T 2 (2007–2015). Human activities, including livestock grazing intensity and transportation accessibility measured by road network density, were included as explanatory variables for vegetation degradation, which was defined for locations if vegetation recovery or no significant change in vegetation in T 1 and vegetation degradation in T 2 were observed. Our work compared the results of BLR-NIs and the traditional BLR model that did not consider NIs. The study showed that: (1) both grazing intensity and road density had a positive correlation to vegetation degradation based on the traditional BLR model; (2) only road density was found to positively correlate to vegetation degradation by the BLR-NIs model; NIs appeared to be critical factors to predict vegetation degradation; and (3) including NIs in the BLR model improved the model performance substantially. The study provided evidence for the importance of including localized spatial associations between the trajectory patterns for mapping vegetation degradation, which has practical implications for designing management policies to counterpart grassland degradation in arid and semi-arid areas.

Suggested Citation

  • Yuwei Wang & Zhenyu Wang & Ruren Li & Xiaoliang Meng & Xingjun Ju & Yuguo Zhao & Zongyao Sha, 2018. "Comparison of Modeling Grassland Degradation with and without Considering Localized Spatial Associations in Vegetation Changing Patterns," Sustainability, MDPI, vol. 10(2), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:316-:d:128830
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/2/316/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/2/316/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei Sun & Lizhe Yang & Lu Hao & Di Fang & Kailun Jin & Xiaolin Huang, 2017. "Hydrological Effects of Vegetation Cover Degradation and Environmental Implications in a Semiarid Temperate Steppe, China," Sustainability, MDPI, vol. 9(2), pages 1-20, February.
    2. Deng, Xiangzheng & Huang, Jikun & Huang, Qiuqiong & Rozelle, Scott & Gibson, John, 2011. "Do roads lead to grassland degradation or restoration? A case study in Inner Mongolia, China," Environment and Development Economics, Cambridge University Press, vol. 16(6), pages 751-773, December.
    3. Xuefeng Zhang & Jianming Niu & Alexander Buyantuev & Qing Zhang & Jianjun Dong & Sarula Kang & Jing Zhang, 2016. "Understanding Grassland Degradation and Restoration from the Perspective of Ecosystem Services: A Case Study of the Xilin River Basin in Inner Mongolia, China," Sustainability, MDPI, vol. 8(7), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lili Xu & Zhenfa Tu & Yuke Zhou & Guangming Yu, 2018. "Profiling Human-Induced Vegetation Change in the Horqin Sandy Land of China Using Time Series Datasets," Sustainability, MDPI, vol. 10(4), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunfeng Hu & Batu Nacun, 2018. "An Analysis of Land-Use Change and Grassland Degradation from a Policy Perspective in Inner Mongolia, China, 1990–2015," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    2. Jing Zhang & Xueming Li & Alexander Buyantuev & Tongliga Bao & Xuefeng Zhang, 2019. "How Do Trade-Offs and Synergies between Ecosystem Services Change in the Long Period? The Case Study of Uxin, Inner Mongolia, China," Sustainability, MDPI, vol. 11(21), pages 1-19, October.
    3. Liu, Min & Huang, Jikun & Dries, Liesbeth & Heijman, Wim & Zhu, Xueqin, 2020. "How does land tenure reform impact upon pastoral livestock production? An empirical study for Inner Mongolia, China," China Economic Review, Elsevier, vol. 60(C).
    4. Hejie Wei & Weiguo Fan & Zhenyu Ding & Boqi Weng & Kaixiong Xing & Xuechao Wang & Nachuan Lu & Sergio Ulgiati & Xiaobin Dong, 2017. "Ecosystem Services and Ecological Restoration in the Northern Shaanxi Loess Plateau, China, in Relation to Climate Fluctuation and Investments in Natural Capital," Sustainability, MDPI, vol. 9(2), pages 1-20, February.
    5. Enjun Ma & Xiangzheng Deng & Qian Zhang & Anping Liu, 2014. "Spatial Variation of Surface Energy Fluxes Due to Land Use Changes across China," Energies, MDPI, vol. 7(4), pages 1-13, April.
    6. Xiangzheng Deng & Chunhong Zhao & Yingzhi Lin & Tao Zhang & Yi Qu & Fan Zhang & Zhan Wang & Feng Wu, 2014. "Downscaling the Impacts of Large-Scale LUCC on Surface Temperature along with IPCC RCPs: A Global Perspective," Energies, MDPI, vol. 7(4), pages 1-20, April.
    7. Yang Liu & Qing Zhang & Qingfu Liu & Yongzhi Yan & Wanxin Hei & Deyong Yu & Jianguo Wu, 2020. "Different Household Livelihood Strategies and Influencing Factors in the Inner Mongolian Grassland," Sustainability, MDPI, vol. 12(3), pages 1-15, January.
    8. Mariane Paulina Batalha Roque & José Ambrósio Ferreira Neto & André Luiz Lopes Faria, 2022. "Degraded grassland and the conflict of land use in protected areas of hotspot in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 1475-1492, January.
    9. Hu, Yuanning & Huang, Jikun & Hou, Lingling, 2019. "Impacts of the Grassland Ecological Compensation Policy on Household Livestock Production in China: An Empirical Study in Inner Mongolia," Ecological Economics, Elsevier, vol. 161(C), pages 248-256.
    10. Qian Li & Xuefeng Zhang & Qingfu Liu & Yang Liu & Yong Ding & Qing Zhang, 2017. "Impact of Land Use Intensity on Ecosystem Services: An Example from the Agro-Pastoral Ecotone of Central Inner Mongolia," Sustainability, MDPI, vol. 9(6), pages 1-11, June.
    11. Xia Meng & Huasheng Huang & Luo Guo & Dan Wang & Rui Han & Kexin Zhou, 2020. "Threatened Status Assessment of Multiple Grassland Ecosystems and Conservation Strategies in the Xilin River Basin, NE China," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    12. Zilu Zhang & Jingzhao Ma & Tianhao Wang & Wenbo Song & Lu Hao, 2023. "Identify the relationship of meteorological drought and ecohydrological drought in Xilin Gol Grassland, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2549-2564, March.
    13. Byrne, Anne T. & Hadrich, Joleen C. & Robinson, Brian E. & Han, Guodong, 2020. "A factor-income approach to estimating grassland protection subsidy payments to livestock herders in Inner Mongolia, China," Land Use Policy, Elsevier, vol. 91(C).
    14. Liu, Min & Dries, Liesbeth & Heijman, Wim & Zhu, Xueqin & Deng, Xiangzheng & Huang, Jikun, 2019. "Land tenure reform and grassland degradation in Inner Mongolia, China," China Economic Review, Elsevier, vol. 55(C), pages 181-198.
    15. Liqun Shao & Haibin Chen & Chen Zhang & Xuexi Huo, 2017. "Effects of Major Grassland Conservation Programs Implemented in Inner Mongolia since 2000 on Vegetation Restoration and Natural and Anthropogenic Disturbances to Their Success," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    16. Lina Wang & Enyi Yu & Shuang Li & Xiao Fu & Gang Wu, 2021. "Analysis of Ecosystem Service Trade-Offs and Synergies in Ulansuhai Basin," Sustainability, MDPI, vol. 13(17), pages 1-18, September.
    17. Batunacun, & Wieland, Ralf & Lakes, Tobia & Yunfeng, Hu & Nendel, Claas, 2019. "Identifying drivers of land degradation in Xilingol, China, between 1975 and 2015," Land Use Policy, Elsevier, vol. 83(C), pages 543-559.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:316-:d:128830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.