IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i4p2194-2206d34841.html
   My bibliography  Save this article

Spatial Variation of Surface Energy Fluxes Due to Land Use Changes across China

Author

Listed:
  • Enjun Ma

    (School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China)

  • Xiangzheng Deng

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    Center for Chinese Agricultural Policy, Chinese Academy of Sciences, Beijing 100101, China)

  • Qian Zhang

    (Department of Urban Planning and Environment, Royal Institute of Technology-KTH, Drottning Kristinas väg 30, SE 10044 Stockholm, Sweden)

  • Anping Liu

    (School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China)

Abstract

We estimate the heat flux changes caused by the projected land transformation over the next 40 years across China to improve the understanding of the impacts of land dynamics on regional climate. We use the Weather Research and Forecasting (WRF) model to investigate these impacts in four representative land transformation zones, where reclamation, overgrazing, afforestation, and urbanization dominates the land use and land cover changes in each zone respectively. As indicated by the significant variance of albedo due to different land use and cover changes, different surface properties cause great spatial variance of the surface flux. From the simulation results, latent heat flux increases by 2 and 21 W/m 2 in the reclamation and afforestation regions respectively. On the contrary, overgrazing and urban expansion results in decrease of latent heat flux by 5 and 36 W/m 2 correspondingly. Urban expansion leads to an average increase of 40 W/m 2 of sensible heat flux in the future 40 years, while reclamation, afforestation, as well as overgrazing result in the decrease of sensible heat flux. Results also show that reclamation and overgrazing lead to net radiation decrease by approximately 4 and 7 W/m 2 respectively, however, afforestation and urbanization lead to net radiation increase by 6 and 3 W/m 2 respectively. The simulated impacts of projected HLCCs on surface energy fluxes will inform sustainable land management and climate change mitigation.

Suggested Citation

  • Enjun Ma & Xiangzheng Deng & Qian Zhang & Anping Liu, 2014. "Spatial Variation of Surface Energy Fluxes Due to Land Use Changes across China," Energies, MDPI, vol. 7(4), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2194-2206:d:34841
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/4/2194/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/4/2194/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. T. Chase & J. Knaff & R. Pielke & E. Kalnay, 2003. "Changes in Global Monsoon Circulations Since 1950," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 29(2), pages 229-254, June.
    2. Deng, Xiangzheng & Huang, Jikun & Huang, Qiuqiong & Rozelle, Scott & Gibson, John, 2011. "Do roads lead to grassland degradation or restoration? A case study in Inner Mongolia, China," Environment and Development Economics, Cambridge University Press, vol. 16(6), pages 751-773, December.
    3. Richard A. Betts, 2000. "Offset of the potential carbon sink from boreal forestation by decreases in surface albedo," Nature, Nature, vol. 408(6809), pages 187-190, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Wang & Guohua Liu & Zongshan Li & Xin Ye & Bojie Fu & Yihe Lü, 2017. "Analysis of the Driving Forces in Vegetation Variation in the Grain for Green Program Region, China," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
    2. Xueyi Yu & Chi Mu & Dongdong Zhang, 2020. "Assessment of Land Reclamation Benefits in Mining Areas Using Fuzzy Comprehensive Evaluation," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    3. You Jin Kwon & Dong Kun Lee & Kiseung Lee, 2019. "Determining Favourable and Unfavourable Thermal Areas in Seoul Using In-Situ Measurements: A Preliminary Step towards Developing a Smart City," Energies, MDPI, vol. 12(12), pages 1-24, June.
    4. Wei Song & Xiangzheng Deng, 2015. "Effects of Urbanization-Induced Cultivated Land Loss on Ecosystem Services in the North China Plain," Energies, MDPI, vol. 8(6), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunfeng Hu & Batu Nacun, 2018. "An Analysis of Land-Use Change and Grassland Degradation from a Policy Perspective in Inner Mongolia, China, 1990–2015," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    2. Zhan Chen & Yihao Wang & Ruisi Chen & Xiuya Ni & Jixin Cao, 2022. "Effects of Forest Type on Nutrient Fluxes in Throughfall, Stemflow, and Litter Leachate within Acid-Polluted Locations in Southwest China," IJERPH, MDPI, vol. 19(5), pages 1-15, February.
    3. H. Damon Matthews & Kirsten Zickfeld & Alexander Koch & Amy Luers, 2023. "Accounting for the climate benefit of temporary carbon storage in nature," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Anatoly Shvidenko & Mike Apps, 2006. "The International Boreal Forest Research Association: Understanding Boreal Forests and Forestry in a Changing World," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(1), pages 5-32, January.
    5. Robert Hamwey, 2007. "Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An Exploratory Study," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(4), pages 419-439, May.
    6. Jean-Baptiste, Philippe & Ducroux, Rene, 2003. "Energy policy and climate change," Energy Policy, Elsevier, vol. 31(2), pages 155-166, January.
    7. Liu, Min & Huang, Jikun & Dries, Liesbeth & Heijman, Wim & Zhu, Xueqin, 2020. "How does land tenure reform impact upon pastoral livestock production? An empirical study for Inner Mongolia, China," China Economic Review, Elsevier, vol. 60(C).
    8. He, Hongxing & Jansson, Per-Erik & Svensson, Magnus & Meyer, Astrid & Klemedtsson, Leif & Kasimir, Åsa, 2016. "Factors controlling Nitrous Oxide emission from a spruce forest ecosystem on drained organic soil, derived using the CoupModel," Ecological Modelling, Elsevier, vol. 321(C), pages 46-63.
    9. Gustavsson, Leif & Haus, Sylvia & Lundblad, Mattias & Lundström, Anders & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le & Wikberg, Per-Erik, 2017. "Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 612-624.
    10. Sohngen, Brent & Favero, Alice & Jin, Yufang & Huang, Yuhan, 2018. "Global cost estimates of forest climate mitigation with albedo: A new policy approach," 2018 Annual Meeting, August 5-7, Washington, D.C. 274307, Agricultural and Applied Economics Association.
    11. Yuwei Wang & Zhenyu Wang & Ruren Li & Xiaoliang Meng & Xingjun Ju & Yuguo Zhao & Zongyao Sha, 2018. "Comparison of Modeling Grassland Degradation with and without Considering Localized Spatial Associations in Vegetation Changing Patterns," Sustainability, MDPI, vol. 10(2), pages 1-15, January.
    12. Xu Lian & Sujong Jeong & Chang-Eui Park & Hao Xu & Laurent Z. X. Li & Tao Wang & Pierre Gentine & Josep Peñuelas & Shilong Piao, 2022. "Biophysical impacts of northern vegetation changes on seasonal warming patterns," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Xiangzheng Deng & Chunhong Zhao & Yingzhi Lin & Tao Zhang & Yi Qu & Fan Zhang & Zhan Wang & Feng Wu, 2014. "Downscaling the Impacts of Large-Scale LUCC on Surface Temperature along with IPCC RCPs: A Global Perspective," Energies, MDPI, vol. 7(4), pages 1-20, April.
    14. Elizabeth Kopits & Alex L. Marten & Ann Wolverton, 2013. "Moving Forward with Incorporating "Catastrophic" Climate Change into Policy Analysis," NCEE Working Paper Series 201301, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Jan 2013.
    15. Glenn Hodgkins, 2013. "The importance of record length in estimating the magnitude of climatic changes: an example using 175 years of lake ice-out dates in New England," Climatic Change, Springer, vol. 119(3), pages 705-718, August.
    16. Eriksson, Mathilda, 2020. "Afforestation and avoided deforestation in a multi-regional integrated assessment model," Ecological Economics, Elsevier, vol. 169(C).
    17. Melania Michetti & Matteo Zampieri, 2014. "Climate–Human–Land Interactions: A Review of Major Modelling Approaches," Land, MDPI, vol. 3(3), pages 1-41, July.
    18. Jingmeng Wang & Wei Li & Philippe Ciais & Laurent Z. X. Li & Jinfeng Chang & Daniel Goll & Thomas Gasser & Xiaomeng Huang & Narayanappa Devaraju & Olivier Boucher, 2021. "Global cooling induced by biophysical effects of bioenergy crop cultivation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    19. Hu, Yuanning & Huang, Jikun & Hou, Lingling, 2019. "Impacts of the Grassland Ecological Compensation Policy on Household Livestock Production in China: An Empirical Study in Inner Mongolia," Ecological Economics, Elsevier, vol. 161(C), pages 248-256.
    20. Wen Huo & Fan Yang & Xiefei Zhi & Ali Mamtimin & Qing He & Honglin Pan & Cong Wen & Yu Wang & Ye Wu & Xinghua Yang & Chenglong Zhou & Meiqi Song & Lu Meng & Minzhong Wang, 2022. "A Comparative Study on the Difference in Meteorological Monitoring between Constructed Green Land and Natural Sandy Land," Sustainability, MDPI, vol. 14(3), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2194-2206:d:34841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.