IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v111y2018icp41-52.html
   My bibliography  Save this article

Reproducible generation of experimental data sample for calibrating traffic flow fundamental diagram

Author

Listed:
  • Zhang, Jin
  • Qu, Xiaobo
  • Wang, Shuaian

Abstract

Speed – density relationship, which is usually referred to as the traffic flow fundamental diagram, has been considered as the foundation of the traffic flow theory and transportation engineering. Speed - density relationship is the foundation of the traffic flow theory and transportation engineering, as it represents the mathematical relationship among the three fundamental parameters of traffic flow. It was long believed that single regime models could not well represent all traffic states ranging from free flow conditions to jam conditions until Qu et al. (2015) pointed out that the inaccuracy was not caused solely by their functional forms, but also by sample selection bias. They then applied a new calibration method (named as Qu-Wang-Zhang model hereafter) to address the sample selection bias. With this Qu-Wang-Zhang model, the result calibrated from observational data sample can consistently well represent all traffic states ranging from free flow conditions to traffic jam conditions. In the current paper, we use a fundamentally different approach that is able to yield very similar and consistent results with the Qu-Wang-Zhang model. The proposed approach firstly applies reproducible sample generation to convert the observational data to experimental data. The traditional least square method (LSM) can subsequently be applied to calibrate accurate traffic flow fundamental diagrams. Two reproducible sample generation approaches are proposed in this research. Based on our analyses, the first approach is somewhat affected by outliers and the second approach is more robust in dealing with potential outliers.

Suggested Citation

  • Zhang, Jin & Qu, Xiaobo & Wang, Shuaian, 2018. "Reproducible generation of experimental data sample for calibrating traffic flow fundamental diagram," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 41-52.
  • Handle: RePEc:eee:transa:v:111:y:2018:i:c:p:41-52
    DOI: 10.1016/j.tra.2018.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096585641730215X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2018.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castillo, J. M. Del & Benítez, F. G., 1995. "On the functional form of the speed-density relationship--I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 29(5), pages 373-389, October.
    2. Zhen, Lu, 2016. "Modeling of yard congestion and optimization of yard template in container ports," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 83-104.
    3. Zhang, H.M. & Kim, T., 2005. "A car-following theory for multiphase vehicular traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 385-399, June.
    4. He, Sheng-Xue, 2016. "Will a higher free-flow speed lead us to a less congested freeway?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 17-38.
    5. Harold Greenberg, 1959. "An Analysis of Traffic Flow," Operations Research, INFORMS, vol. 7(1), pages 79-85, February.
    6. Aboudina, Aya & Abdelgawad, Hossam & Abdulhai, Baher & Habib, Khandker Nurul, 2016. "Time-dependent congestion pricing system for large networks: Integrating departure time choice, dynamic traffic assignment and regional travel surveys in the Greater Toronto Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 411-430.
    7. Qu, Xiaobo & Zhang, Jin & Wang, Shuaian, 2017. "On the stochastic fundamental diagram for freeway traffic: Model development, analytical properties, validation, and extensive applications," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 256-271.
    8. Wang, Haizhong & Li, Jia & Chen, Qian-Yong & Ni, Daiheng, 2011. "Logistic modeling of the equilibrium speed-density relationship," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 554-566, July.
    9. Guevara, C. Angelo, 2015. "Critical assessment of five methods to correct for endogeneity in discrete-choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 240-254.
    10. Leslie C. Edie, 1961. "Car-Following and Steady-State Theory for Noncongested Traffic," Operations Research, INFORMS, vol. 9(1), pages 66-76, February.
    11. Qu, Xiaobo & Wang, Shuaian & Zhang, Jin, 2015. "On the fundamental diagram for freeway traffic: A novel calibration approach for single-regime models," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 91-102.
    12. G. F. Newell, 1961. "Nonlinear Effects in the Dynamics of Car Following," Operations Research, INFORMS, vol. 9(2), pages 209-229, April.
    13. Jin, Sheng & Qu, Xiaobo & Zhou, Dan & Xu, Cheng & Ma, Dongfang & Wang, Dianhai, 2015. "Estimating cycleway capacity and bicycle equivalent unit for electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 225-248.
    14. Castillo, J. M. Del & Benítez, F. G., 1995. "On the functional form of the speed-density relationship--II: Empirical investigation," Transportation Research Part B: Methodological, Elsevier, vol. 29(5), pages 391-406, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Veronika Harantová & Ambróz Hájnik & Alica Kalašová & Tomasz Figlus, 2022. "The Effect of the COVID-19 Pandemic on Traffic Flow Characteristics, Emissions Production and Fuel Consumption at a Selected Intersection in Slovakia," Energies, MDPI, vol. 15(6), pages 1-21, March.
    2. Shi, Xiaowei & Li, Xiaopeng, 2021. "Constructing a fundamental diagram for traffic flow with automated vehicles: Methodology and demonstration," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 279-292.
    3. Yidan Shangguan & Xuecheng Tian & Sheng Jin & Kun Gao & Xiaosong Hu & Wen Yi & Yu Guo & Shuaian Wang, 2023. "On the Fundamental Diagram for Freeway Traffic: Exploring the Lower Bound of the Fitting Error and Correcting the Generalized Linear Regression Models," Mathematics, MDPI, vol. 11(16), pages 1-15, August.
    4. Ma, Wenfei & Huang, Yunping & Jin, Xiao & Zhong, Renxin, 2024. "Functional form selection and calibration of macroscopic fundamental diagrams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    5. Yao, Handong & Li, Qianwen & Li, Xiaopeng, 2020. "A study of relationships in traffic oscillation features based on field experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 339-355.
    6. Alonso, Borja & Ibeas, Ángel & Musolino, Giuseppe & Rindone, Corrado & Vitetta, Antonino, 2019. "Effects of traffic control regulation on Network Macroscopic Fundamental Diagram: A statistical analysis of real data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 136-151.
    7. Cui, Shaohua & Yang, Ying & Gao, Kun & Cui, Heqi & Najafi, Arsalan, 2024. "Integration of UAVs with public transit for delivery: Quantifying system benefits and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    2. Qu, Xiaobo & Zhang, Jin & Wang, Shuaian, 2017. "On the stochastic fundamental diagram for freeway traffic: Model development, analytical properties, validation, and extensive applications," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 256-271.
    3. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    4. Wang, Haizhong & Li, Jia & Chen, Qian-Yong & Ni, Daiheng, 2011. "Logistic modeling of the equilibrium speed-density relationship," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 554-566, July.
    5. Cheng, Qixiu & Lin, Yuqian & Zhou, Xuesong (Simon) & Liu, Zhiyuan, 2024. "Analytical formulation for explaining the variations in traffic states: A fundamental diagram modeling perspective with stochastic parameters," European Journal of Operational Research, Elsevier, vol. 312(1), pages 182-197.
    6. Michael Z. F. Li, 2008. "A Generic Characterization of Equilibrium Speed-Flow Curves," Transportation Science, INFORMS, vol. 42(2), pages 220-235, May.
    7. Qu, Xiaobo & Wang, Shuaian & Zhang, Jin, 2015. "On the fundamental diagram for freeway traffic: A novel calibration approach for single-regime models," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 91-102.
    8. Niek Baer & Richard J. Boucherie & Jan-Kees C. W. van Ommeren, 2019. "Threshold Queueing to Describe the Fundamental Diagram of Uninterrupted Traffic," Transportation Science, INFORMS, vol. 53(2), pages 585-596, March.
    9. Yidan Shangguan & Xuecheng Tian & Sheng Jin & Kun Gao & Xiaosong Hu & Wen Yi & Yu Guo & Shuaian Wang, 2023. "On the Fundamental Diagram for Freeway Traffic: Exploring the Lower Bound of the Fitting Error and Correcting the Generalized Linear Regression Models," Mathematics, MDPI, vol. 11(16), pages 1-15, August.
    10. Jin, Sheng & Qu, Xiaobo & Zhou, Dan & Xu, Cheng & Ma, Dongfang & Wang, Dianhai, 2015. "Estimating cycleway capacity and bicycle equivalent unit for electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 225-248.
    11. Shi, Xiaowei & Li, Xiaopeng, 2021. "Constructing a fundamental diagram for traffic flow with automated vehicles: Methodology and demonstration," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 279-292.
    12. Jabari, Saif Eddin & Zheng, Jianfeng & Liu, Henry X., 2014. "A probabilistic stationary speed–density relation based on Newell’s simplified car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 205-223.
    13. Wang, Xiao & Jiang, Rui & Li, Li & Lin, Yi-Lun & Wang, Fei-Yue, 2019. "Long memory is important: A test study on deep-learning based car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 786-795.
    14. Yin, Ruyang & Zheng, Nan & Liu, Zhiyuan, 2022. "Estimating fundamental diagram for multi-modal signalized urban links with limited probe data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    15. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    16. Zheng, Fangfang & Jabari, Saif Eddin & Liu, Henry X. & Lin, DianChao, 2018. "Traffic state estimation using stochastic Lagrangian dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 143-165.
    17. Guan, Hao & Wang, Hua & Meng, Qiang & Mak, Chin Long, 2023. "Markov chain-based traffic analysis on platooning effect among mixed semi- and fully-autonomous vehicles in a freeway lane," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 176-202.
    18. Xingliang Liu & Jian Wang & Tangzhi Liu & Jin Xu, 2021. "Forecasting Spatiotemporal Boundary of Emergency-Event-Based Traffic Congestion in Expressway Network Considering Highway Node Acceptance Capacity," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
    19. Gao, Yuxing & Zhuang, Yifan & Dong, Fangshu & Peng, Fei & Zhang, Ping & Yang, Lizhong & Ni, Yong, 2020. "Experimental study on the effect of trolley case on unidirectional pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    20. Ahmed, Afzal & Ngoduy, Dong & Adnan, Muhammad & Baig, Mirza Asad Ullah, 2021. "On the fundamental diagram and driving behavior modeling of heterogeneous traffic flow using UAV-based data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 100-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:111:y:2018:i:c:p:41-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.