IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4552-d187236.html
   My bibliography  Save this article

Investigating the Effects of the Built Environment on PM 2.5 and PM 10 : A Case Study of Seoul Metropolitan City, South Korea

Author

Listed:
  • Seung-Hoon Park

    (Department of Urban Planning, Keimyung University, Daegu 42601, Korea)

  • Dong-Won Ko

    (Department of Urban Planning, Keimyung University, Daegu 42601, Korea)

Abstract

Air pollution has a major impact on human health and quality of life; therefore, its determinants should be studied to promote effective management and reduction. Here, we examined the influence of the built environment on air pollution by analyzing the relationship between the built environment and particulate matter (i.e., PM 2.5 and PM 10 ). Air pollution data collected in Seoul in 2014 were spatially mapped using geographic information system tools, and PM 2.5 and PM 10 concentrations were determined in individual neighborhoods using an interpolation method. PM 2.5 and PM 10 failed to show spatial autocorrelation; therefore, we analyzed the associations between PM fractions and built environment characteristics using an ordinary least squares regression model. PM 2.5 and PM 10 exhibited some differences in spatial distributions, suggesting that the built environment has different effects on these fractions. For instance, high PM 10 concentrations were associated with neighborhoods with more bus routes, bus stops, and river areas. Meanwhile, both PM 2.5 and PM 10 were more likely to be high in areas with more commercial areas and multi-family housing, but low in areas with more main roads, more single-family housing, and high average gross commercial floor area. This study is expected to contribute to establishing policies and strategies to promote sustainability in Seoul, Korea.

Suggested Citation

  • Seung-Hoon Park & Dong-Won Ko, 2018. "Investigating the Effects of the Built Environment on PM 2.5 and PM 10 : A Case Study of Seoul Metropolitan City, South Korea," Sustainability, MDPI, vol. 10(12), pages 1-11, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4552-:d:187236
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4552/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4552/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cárdenas Rodríguez, Miguel & Dupont-Courtade, Laura & Oueslati, Walid, 2016. "Air pollution and urban structure linkages: Evidence from European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1-9.
    2. Hee-Sun Cho & Mack Joong Choi, 2014. "Effects of Compact Urban Development on Air Pollution: Empirical Evidence from Korea," Sustainability, MDPI, vol. 6(9), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Widya Liadira Kusuma & Wu Chih-Da & Zeng Yu-Ting & Handayani Hepi Hapsari & Jaelani Lalu Muhamad, 2019. "PM 2.5 Pollutant in Asia—A Comparison of Metropolis Cities in Indonesia and Taiwan," IJERPH, MDPI, vol. 16(24), pages 1-12, December.
    2. Jong In Baek & Yong Un Ban, 2020. "The Impacts of Urban Air Pollution Emission Density on Air Pollutant Concentration Based on a Panel Model," Sustainability, MDPI, vol. 12(20), pages 1-26, October.
    3. Aya Elkamhawy & Choon-Man Jang, 2020. "Performance Evaluation of Hybrid Air Purification System with Vegetation Soil and Electrostatic Precipitator Filters," Sustainability, MDPI, vol. 12(13), pages 1-16, July.
    4. Liadira Kusuma Widya & Chin-Yu Hsu & Hsiao-Yun Lee & Lalu Muhamad Jaelani & Shih-Chun Candice Lung & Huey-Jen Su & Chih-Da Wu, 2020. "Comparison of Spatial Modelling Approaches on PM 10 and NO 2 Concentration Variations: A Case Study in Surabaya City, Indonesia," IJERPH, MDPI, vol. 17(23), pages 1-15, November.
    5. Seunghoon Park & Dongwon Ko, 2020. "A Multilevel Model Approach for Investigating Individual Accident Characteristics and Neighborhood Environment Characteristics Affecting Pedestrian-Vehicle Crashes," IJERPH, MDPI, vol. 17(9), pages 1-18, April.
    6. Chunyi Li & Yilan Huang & Huanhuan Guo & Gaojie Wu & Yifei Wang & Wei Li & Lijuan Cui, 2019. "The Concentrations and Removal Effects of PM 10 and PM 2.5 on a Wetland in Beijing," Sustainability, MDPI, vol. 11(5), pages 1-15, March.
    7. Eunha Shin & Heungsoon Kim, 2019. "Benefit–Cost Analysis of Green Roof Initiative Projects: The Case of Jung-gu, Seoul," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    8. Shanyou Duan & Qian Liu & Dumei Jiang & Yulin Jiang & Yinzhi Lin & Ziying Gong, 2021. "Exploring the Joint Impacts of Natural and Built Environments on PM 2.5 Concentrations and Their Spatial Heterogeneity in the Context of High-Density Chinese Cities," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    9. Hyunjung Lee & Sookuk Park & Helmut Mayer, 2023. "Statistical Characteristics of Air Quality Index DAQx*-Specific Air Pollutants Differentiated by Types of Air Quality Monitoring Stations: A Case Study of Seoul, Republic of Korea," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
    10. Sungwan Son & Aya Elkamhawy & Choon-Man Jang, 2022. "Active Soil Filter System for Indoor Air Purification in School Classrooms," IJERPH, MDPI, vol. 19(23), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jong In Baek & Yong Un Ban, 2020. "The Impacts of Urban Air Pollution Emission Density on Air Pollutant Concentration Based on a Panel Model," Sustainability, MDPI, vol. 12(20), pages 1-26, October.
    2. Yupeng Liu & Jianguo Wu & Deyong Yu, 2018. "Disentangling the Complex Effects of Socioeconomic, Climatic, and Urban Form Factors on Air Pollution: A Case Study of China," Sustainability, MDPI, vol. 10(3), pages 1-14, March.
    3. Cappelli, Federica & Guastella, Gianni & Pareglio, Stefano, 2021. "Urban Sprawl and Air Quality in European Cities: an Empirical Assessment," FEEM Working Papers 309920, Fondazione Eni Enrico Mattei (FEEM).
    4. Man Yuan & Mingrui Yan & Zhuoran Shan, 2021. "Is Compact Urban Form Good for Air Quality? A Case Study from China Based on Hourly Smartphone Data," Land, MDPI, vol. 10(5), pages 1-14, May.
    5. Gianni Guastella & Walid Oueslati & Stefano Pareglio, 2019. "Patterns of Urban Spatial Expansion in European Cities," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
    6. Meen Chel Jung & Jaewoo Park & Sunghwan Kim, 2019. "Spatial Relationships between Urban Structures and Air Pollution in Korea," Sustainability, MDPI, vol. 11(2), pages 1-17, January.
    7. Lijie He & Ying Liu & Peipei He & Hao Zhou, 2019. "Relationship between Air Pollution and Urban Forms: Evidence from Prefecture-Level Cities of the Yangtze River Basin," IJERPH, MDPI, vol. 16(18), pages 1-21, September.
    8. Denant-Boemont, Laurent & Gaigné, Carl & Gaté, Romain, 2018. "Urban spatial structure, transport-related emissions and welfare," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 29-45.
    9. Mingran Wu, 2023. "The impact of eco-environmental regulation on green energy efficiency in China - Based on spatial economic analysis," Energy & Environment, , vol. 34(4), pages 971-988, June.
    10. Chuang Sun & Xuegang Chen & Siyu Zhang & Tianhao Li, 2022. "Can Changes in Urban Form Affect PM 2.5 Concentration? A Comparative Analysis from 286 Prefecture-Level Cities in China," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    11. Jianqing Zhang & Haichao Yu & Keke Zhang & Liang Zhao & Fei Fan, 2021. "Can Innovation Agglomeration Reduce Carbon Emissions? Evidence from China," IJERPH, MDPI, vol. 18(2), pages 1-24, January.
    12. Mostafa Ghadami & Andreas Dittmann & Taher Safarrad, 2020. "Lack of Spatial Approach in Urban Density Policies: The Case of the Master Plan of Tehran," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    13. Joanna Hałacz & Aldona Skotnicka-Siepsiak & Maciej Neugebauer, 2020. "Assessment of Reducing Pollutant Emissions in Selected Heating and Ventilation Systems in Single-Family Houses," Energies, MDPI, vol. 13(5), pages 1-19, March.
    14. Chuanglin Fang & Haimeng Liu & Guangdong Li & Dongqi Sun & Zhuang Miao, 2015. "Estimating the Impact of Urbanization on Air Quality in China Using Spatial Regression Models," Sustainability, MDPI, vol. 7(11), pages 1-23, November.
    15. Sun, Jianing & Zhou, Tao & Wang, Di, 2022. "Relationships between urban form and air quality: A reconsideration based on evidence from China’s five urban agglomerations during the COVID-19 pandemic," Land Use Policy, Elsevier, vol. 118(C).
    16. Mingze Li & Yuan Huang & Mingdan Han, 2019. "How to Maintain a Sustainable Environment? A Spatial Evolution of Urban Atmospheric Pollution and Impact Factors in China," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    17. Rubina Canesi, 2022. "Urban Policy Sustainability through a Value-Added Densification Tool: The Case of the South Boston Area," Sustainability, MDPI, vol. 14(14), pages 1-12, July.
    18. Qingyong Wang & Hong-Ning Dai & Hao Wang, 2017. "A Smart MCDM Framework to Evaluate the Impact of Air Pollution on City Sustainability: A Case Study from China," Sustainability, MDPI, vol. 9(6), pages 1-17, May.
    19. Piotr Oskar Czechowski & Anna Romanowska & Ernest Czermański & Aneta Oniszczuk-Jastrząbek & Marzena Wanagos, 2023. "An Attempt to Determine the Relationship between Air Pollution and the Real Estate Market in 2010–2020 in Gdańsk Using GLM and GRM Statistical Models," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    20. Mauro D’Angelo & Ignacio Franchi & Valentina Colistro & Ana Clara Vera & Alicia Aleman & Elizabeth González, 2023. "Associations between Environmental Exposure, Urban Environment Parameters and Meteorological Conditions, during Active Travel in Montevideo, Uruguay," Sustainability, MDPI, vol. 15(4), pages 1-27, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4552-:d:187236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.