IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i11p4310-d184336.html
   My bibliography  Save this article

Soil Quality Change after Reclaiming Subsidence Land with Yellow River Sediments

Author

Listed:
  • Linghua Duo

    (Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology, Beijing 100083, China)

  • Zhenqi Hu

    (Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology, Beijing 100083, China
    School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

With continuous population growth and decreasing cultivated land area, China’s food security is greatly threatened. Additionally, coal mining in China is primarily underground mining, which causes land subsidence and destroys existing cultivated land. This effect aggravates the contradiction between a growing population and a shrinking area of cultivated land. The purpose of this study was to introduce a method of filling reclamation with Yellow River sediments to restore farmland and realize the sustainable utilization of cultivated land. The properties of the soil and crop yields in reclaimed farmland were assessed. This study examined farmland reclaimed with Yellow River sediments at an experimental site located in Jining City, Shandong Province, China. Filling reclamation procedures with Yellow River sediments were applied. The reclaimed farmland (RF) and unaltered farmland (CK) were continuously monitored for three years, and the soil was sampled six times. A total of 180 soil samples were collected from RF and CK. The soil properties were measured at three depths: 0–20 cm, 20–50 cm, and 50–80 cm. Crop yields were monitored regularly. The results indicate that filling reclamation with Yellow River sediments is an effective method for restoring farmland. The RF and CK soils were weakly alkaline, non-saline soils. The RF soil was suitable for the growth of local crops. With an increasing number of farming years, both the quality of cultivated land and crop yields have increased. Therefore, filling reclamation with Yellow River sediments is an effective way to realize the sustainable utilization of cultivated land.

Suggested Citation

  • Linghua Duo & Zhenqi Hu, 2018. "Soil Quality Change after Reclaiming Subsidence Land with Yellow River Sediments," Sustainability, MDPI, vol. 10(11), pages 1-13, November.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4310-:d:184336
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/11/4310/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/11/4310/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhenqi Hu & Linghua Duo & Fang Shao, 2018. "Optimal Thickness of Soil Cover for Reclaiming Subsided Land with Yellow River Sediments," Sustainability, MDPI, vol. 10(11), pages 1-12, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ya Shao & Qinxue Xu & Xi Wei, 2023. "Progress of Mine Land Reclamation and Ecological Restoration Research Based on Bibliometric Analysis," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
    2. Li, Gensheng & Hu, Zhenqi & Li, Pengyu & Yuan, Dongzhu & Wang, Wenjuan & Yang, Kun, 2021. "The optimal framework and model to balance underground coal mining and cropland protection in Jining, eastern China," Resources Policy, Elsevier, vol. 74(C).
    3. Meijia Xiao & Qingwen Zhang & Liqin Qu & Hafiz Athar Hussain & Yuequn Dong & Li Zheng, 2019. "Spatiotemporal Changes and the Driving Forces of Sloping Farmland Areas in the Sichuan Region," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
    4. Song, Changji & Song, Jingru & Wu, Qiang & Shen, Xiaojun & Hu, Yawei & Hu, Caihong & Li, Wenhao & Wang, Zhenhua, 2023. "Effects of applying river sediment with irrigation water on salinity leaching during wheat-maize rotation in the Yellow River Delta," Agricultural Water Management, Elsevier, vol. 276(C).
    5. Chengqiang Li & Junxiao Wang & Liang Ge & Yujie Zhou & Shenglu Zhou, 2022. "Optimization of Sample Construction Based on NDVI for Cultivated Land Quality Prediction," IJERPH, MDPI, vol. 19(13), pages 1-17, June.
    6. Wenjuan Jin & Han Wu & Zhongyi Wei & Chunlan Han & Zhenxing Bian & Xufeng Zhang, 2022. "Are Iron Tailings Suitable for Constructing the Soil Profile Configuration of Reclaimed Farmland? A Soil Quality Evaluation Based on Chronosequences," IJERPH, MDPI, vol. 19(14), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihai Buta & Gheorghe Blaga & Laura Paulette & Ioan Păcurar & Sanda Roșca & Orsolya Borsai & Florina Grecu & Pauliuc Ecaterina Sînziana & Cornel Negrușier, 2019. "Soil Reclamation of Abandoned Mine Lands by Revegetation in Northwestern Part of Transylvania: A 40-Year Retrospective Study," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    2. Xiaojun Zhu & Feng Zha & Hua Cheng & Liugen Zheng & Hui Liu & Wenshan Huang & Yu Yan & Liangjun Dai & Shenzhu Fang & Xiaoyu Yang, 2022. "Spatial Pattern Reconstruction of Water and Land Resources in Coal Mining Subsidence Areas within Urban Regions," Sustainability, MDPI, vol. 14(18), pages 1-24, September.
    3. Meijia Xiao & Qingwen Zhang & Liqin Qu & Hafiz Athar Hussain & Yuequn Dong & Li Zheng, 2019. "Spatiotemporal Changes and the Driving Forces of Sloping Farmland Areas in the Sichuan Region," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
    4. Ya Shao & Qinxue Xu & Xi Wei, 2023. "Progress of Mine Land Reclamation and Ecological Restoration Research Based on Bibliometric Analysis," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
    5. Jiaxin Guo & Zhenqi Hu & Yusheng Liang, 2022. "Causes and Countermeasures for the Failure of Mining Land Use Policy Reform: Practice Analysis from China," Land, MDPI, vol. 11(9), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4310-:d:184336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.