IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i11p3938-d179122.html
   My bibliography  Save this article

An Emergy and Decomposition Assessment of China’s Crop Production: Sustainability and Driving Forces

Author

Listed:
  • Zuoxi Liu

    (Key Laboratory of Clean Energy of Liaoning, School of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China)

  • Yongyang Wang

    (Key Laboratory of Clean Energy of Liaoning, School of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China)

  • Shanshan Wang

    (Department of Quality Control, Liaoning Center for Disease Control and Prevention, Shenyang 110005, China)

  • Huijuan Dong

    (China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai 200030, China
    School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Yong Geng

    (China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai 200030, China
    School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Bing Xue

    (Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China)

  • Jiaming Gu

    (Key Laboratory of Clean Energy of Liaoning, School of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China)

  • Run Dong Li

    (Key Laboratory of Clean Energy of Liaoning, School of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China)

  • Tianhua Yang

    (Key Laboratory of Clean Energy of Liaoning, School of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China)

Abstract

With a growing demand for crop products in China, a great deal of local resources and industrial inputs are consumed including agricultural machineries, chemical fertilizers, pesticides, and energies, which results in many environmental issues such as resource depletion, water pollution, soil erosion and contamination, and CO 2 emissions. Thus, this study evaluated the trend of sustainability of China’s crop production from 1997 to 2016 in terms of emergy and further explored the driving forces using decomposition analysis methods. The results showed that the total emergy used ( U ) increased by 50% from 7.82 × 10 23 in 1997 to 1.17 × 10 24 solar emergy Joule (sej) in 2016. Meanwhile, the values of the emergy sustainability index ( ESI ) were all smaller than one with a declining trend year by year, indicating that China’s crop production system is undergoing an unsustainable development pattern. From the results of the ESI decomposition, the renewable resource factor ( R / GDP ) and land use factor ( L / A ) are two key factors impeding the sustainable development of the crop production system. Therefore, the increased capacity of renewable resources and enough labor forces engaged in crop production will be the key strategies for its sustainable development.

Suggested Citation

  • Zuoxi Liu & Yongyang Wang & Shanshan Wang & Huijuan Dong & Yong Geng & Bing Xue & Jiaming Gu & Run Dong Li & Tianhua Yang, 2018. "An Emergy and Decomposition Assessment of China’s Crop Production: Sustainability and Driving Forces," Sustainability, MDPI, vol. 10(11), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:3938-:d:179122
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/11/3938/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/11/3938/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jialing Yu & Jian Wu, 2018. "The Sustainability of Agricultural Development in China: The Agriculture–Environment Nexus," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    2. Xu, Cheng & Chunru, Han & Taylor, Donald C., 1992. "Sustainable agricultural development in China," World Development, Elsevier, vol. 20(8), pages 1127-1144, August.
    3. Chiara Rinaldi, 2017. "Food and Gastronomy for Sustainable Place Development: A Multidisciplinary Analysis of Different Theoretical Approaches," Sustainability, MDPI, vol. 9(10), pages 1-25, September.
    4. Giannetti, B.F. & Ogura, Y. & Bonilla, S.H. & Almeida, C.M.V.B., 2011. "Accounting emergy flows to determine the best production model of a coffee plantation," Energy Policy, Elsevier, vol. 39(11), pages 7399-7407.
    5. Dong, Xiaobin & Ulgiati, Sergio & Yan, Maochao & Zhang, Xinshi & Gao, Wangsheng, 2008. "Energy and eMergy evaluation of bioethanol production from wheat in Henan Province, China," Energy Policy, Elsevier, vol. 36(10), pages 3882-3892, October.
    6. Ang, B.W. & Xu, X.Y., 2013. "Tracking industrial energy efficiency trends using index decomposition analysis," Energy Economics, Elsevier, vol. 40(C), pages 1014-1021.
    7. Huijuan Dong & Zuoxi Liu & Yong Geng & Tsuyoshi Fujita & Minoru Fujii & Lu Sun & Liming Zhang, 2018. "Evaluating Environmental Performance of Industrial Park Development: The Case of Shenyang," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1402-1412, December.
    8. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    9. Saladini, Fabrizio & Gopalakrishnan, Varsha & Bastianoni, Simone & Bakshi, Bhavik R., 2018. "Synergies between industry and nature – An emergy evaluation of a biodiesel production system integrated with ecological systems," Ecosystem Services, Elsevier, vol. 30(PB), pages 257-266.
    10. Wang, Xiaolong & Chen, Yuanquan & Sui, Peng & Gao, Wangsheng & Qin, Feng & Zhang, Jiansheng & Wu, Xia, 2014. "Emergy analysis of grain production systems on large-scale farms in the North China Plain based on LCA," Agricultural Systems, Elsevier, vol. 128(C), pages 66-78.
    11. Zuoxi Liu & Huijuan Dong & Yong Geng & Chengpeng Lu & Wanxia Ren, 2014. "Insights into the Regional Greenhouse Gas (GHG) Emission of Industrial Processes: A Case Study of Shenyang, China," Sustainability, MDPI, vol. 6(6), pages 1-17, June.
    12. Ghisellini, Patrizia & Zucaro, Amalia & Viglia, Silvio & Ulgiati, Sergio, 2014. "Monitoring and evaluating the sustainability of Italian agricultural system. An emergy decomposition analysis," Ecological Modelling, Elsevier, vol. 271(C), pages 132-148.
    13. Deng, Guangyao & Xu, Yan, 2017. "Accounting and structure decomposition analysis of embodied carbon trade: A global perspective," Energy, Elsevier, vol. 137(C), pages 140-151.
    14. Li, Hu & Wang, Ligang & Li, Jianzheng & Gao, Maofang & Zhang, Jing & Zhang, Jianfeng & Qiu, Jianjun & Deng, Jia & Li, Changsheng & Frolking, Steve, 2017. "The development of China-DNDC and review of its applications for sustaining Chinese agriculture," Ecological Modelling, Elsevier, vol. 348(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Román-Collado, Rocío & Colinet, María José, 2018. "Are labour productivity and residential living standards drivers of the energy consumption changes?," Energy Economics, Elsevier, vol. 74(C), pages 746-756.
    2. Wadud, Zia, 2015. "Decomposing the drivers of aviation fuel demand using simultaneous equation models," Energy, Elsevier, vol. 83(C), pages 551-559.
    3. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    4. Jiabin Chen & Shaobo Wen, 2020. "Implications of Energy Intensity Ratio for Carbon Dioxide Emissions in China," Sustainability, MDPI, vol. 12(17), pages 1-13, August.
    5. Junghwan Lee & Jinsoo Kim, 2021. "A Decomposition Analysis of the Korean Manufacturing Sector: Monetary vs. Physical Outputs," Sustainability, MDPI, vol. 13(11), pages 1-13, May.
    6. Wang, Xiaolong & Li, Zhejin & Long, Pan & Yan, Lingling & Gao, Wangsheng & Chen, Yuanquan & Sui, Peng, 2017. "Sustainability evaluation of recycling in agricultural systems by emergy accounting," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 114-124.
    7. Chen, Shaoqing & Chen, Bin, 2014. "Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation," Applied Energy, Elsevier, vol. 115(C), pages 151-163.
    8. Pan, Hengyu & Geng, Yong & Jiang, Ping & Dong, Huijuan & Sun, Lu & Wu, Rui, 2018. "An emergy based sustainability evaluation on a combined landfill and LFG power generation system," Energy, Elsevier, vol. 143(C), pages 310-322.
    9. Kristiāna Dolge & Dagnija Blumberga, 2021. "Key Factors Influencing the Achievement of Climate Neutrality Targets in the Manufacturing Industry: LMDI Decomposition Analysis," Energies, MDPI, vol. 14(23), pages 1-23, November.
    10. Fei Wang & Changjian Wang & Jing Chen & Zeng Li & Ling Li, 2020. "Examining the determinants of energy-related carbon emissions in Central Asia: country-level LMDI and EKC analysis during different phases," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7743-7769, December.
    11. Zhong, Sheng, 2021. "Assessing the drivers of changes in aggregate fuel economy in Massachusetts: The role of vehicle reallocation," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    12. Wen, Hong-xing & Chen, Zhe & Yang, Qian & Liu, Jin-yi & Nie, Pu-yan, 2022. "Driving forces and mitigating strategies of CO2 emissions in China: A decomposition analysis based on 38 industrial sub-sectors," Energy, Elsevier, vol. 245(C).
    13. Zilong Zhang & Xingpeng Chen & Peter Heck, 2014. "Emergy-Based Regional Socio-Economic Metabolism Analysis: An Application of Data Envelopment Analysis and Decomposition Analysis," Sustainability, MDPI, vol. 6(12), pages 1-21, November.
    14. Torrie, Ralph D. & Stone, Christopher & Layzell, David B., 2016. "Understanding energy systems change in Canada: 1. Decomposition of total energy intensity," Energy Economics, Elsevier, vol. 56(C), pages 101-106.
    15. Xianrui Liao & Wei Yang & Yichen Wang & Junnian Song, 2019. "Uncovering Variations, Determinants, and Disparities of Multisector-Level Final Energy Use of Industries Across Cities," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    16. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
    17. Raza, Muhammad Yousaf & Lin, Boqiang, 2022. "Energy efficiency and factor productivity in Pakistan: Policy perspectives," Energy, Elsevier, vol. 247(C).
    18. Tang, Zhipeng & Yu, Haojie & Zou, Jialing, 2022. "How does production substitution affect China's embodied carbon emissions in exports?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    19. Fei Wang & Changjian Wang & Yongxian Su & Lixia Jin & Yang Wang & Xinlin Zhang, 2017. "Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    20. Yang, Q. & Chen, G.Q. & Liao, S. & Zhao, Y.H. & Peng, H.W. & Chen, H.P., 2013. "Environmental sustainability of wind power: An emergy analysis of a Chinese wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 229-239.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:3938-:d:179122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.