IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v6y2014i12p8618-8638d42872.html
   My bibliography  Save this article

Emergy-Based Regional Socio-Economic Metabolism Analysis: An Application of Data Envelopment Analysis and Decomposition Analysis

Author

Listed:
  • Zilong Zhang

    (College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222 #, Lanzhou 730000, China)

  • Xingpeng Chen

    (College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222 #, Lanzhou 730000, China
    These authors contributed equally to this work.)

  • Peter Heck

    (Institute for Applied Material Flow Management, University of Applied Sciences Trier, Campusallee 9926, 55768 Neubrücke, Germany
    These authors contributed equally to this work.)

Abstract

Integrated analysis on socio-economic metabolism could provide a basis for understanding and optimizing regional sustainability. The paper conducted socio-economic metabolism analysis by means of the emergy accounting method coupled with data envelopment analysis and decomposition analysis techniques to assess the sustainability of Qingyang city and its eight sub-region system, as well as to identify the major driving factors of performance change during 2000–2007, to serve as the basis for future policy scenarios. The results indicate that Qingyang greatly depended on non-renewable emergy flows and feedback (purchased) emergy flows, except the two sub-regions, named Huanxian and Huachi, which highly depended on renewable emergy flow. Zhenyuan, Huanxian and Qingcheng were identified as being relatively emergy efficient, and the other five sub-regions have potential to reduce natural resource inputs and waste output to achieve the goal of efficiency. The results of decomposition analysis show that the economic growth, as well as the increased emergy yield ratio and population not accompanied by a sufficient increase of resource utilization efficiency are the main drivers of the unsustainable economic model in Qingyang and call for polices to promote the efficiency of resource utilization and to optimize natural resource use.

Suggested Citation

  • Zilong Zhang & Xingpeng Chen & Peter Heck, 2014. "Emergy-Based Regional Socio-Economic Metabolism Analysis: An Application of Data Envelopment Analysis and Decomposition Analysis," Sustainability, MDPI, vol. 6(12), pages 1-21, November.
  • Handle: RePEc:gam:jsusta:v:6:y:2014:i:12:p:8618-8638:d:42872
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/6/12/8618/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/6/12/8618/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yan & Yang, Zhifeng & Yu, Xiangyi, 2009. "Evaluation of urban metabolism based on emergy synthesis: A case study for Beijing (China)," Ecological Modelling, Elsevier, vol. 220(13), pages 1690-1696.
    2. Fridolin Krausmann & Marina Fischer-Kowalski & Heinz Schandl & Nina Eisenmenger, 2008. "The Global Sociometabolic Transition," Journal of Industrial Ecology, Yale University, vol. 12(5-6), pages 637-656, October.
    3. Song, Malin & An, Qingxian & Zhang, Wei & Wang, Zeya & Wu, Jie, 2012. "Environmental efficiency evaluation based on data envelopment analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4465-4469.
    4. Brown, M. T. & Herendeen, R. A., 1996. "Embodied energy analysis and EMERGY analysis: a comparative view," Ecological Economics, Elsevier, vol. 19(3), pages 219-235, December.
    5. Zhang, F. Q. & Ang, B. W., 2001. "Methodological issues in cross-country/region decomposition of energy and environment indicators," Energy Economics, Elsevier, vol. 23(2), pages 179-190, March.
    6. Jan Weinzettel & Jan Kovanda, 2011. "Structural Decomposition Analysis of Raw Material Consumption," Journal of Industrial Ecology, Yale University, vol. 15(6), pages 893-907, December.
    7. Ang, B.W. & Xu, X.Y., 2013. "Tracking industrial energy efficiency trends using index decomposition analysis," Energy Economics, Elsevier, vol. 40(C), pages 1014-1021.
    8. Geng, Yong & Liu, Ye & Liu, Dan & Zhao, Hengxin & Xue, Bing, 2011. "Regional societal and ecosystem metabolism analysis in China: A multi-scale integrated analysis of societal metabolism(MSIASM) approach," Energy, Elsevier, vol. 36(8), pages 4799-4808.
    9. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    10. Shu‐Li Huang & Chia‐Wen Chen, 2009. "Urbanization and Socioeconomic Metabolism in Taipei," Journal of Industrial Ecology, Yale University, vol. 13(1), pages 75-93, February.
    11. Krausmann, Fridolin & Gingrich, Simone & Eisenmenger, Nina & Erb, Karl-Heinz & Haberl, Helmut & Fischer-Kowalski, Marina, 2009. "Growth in global materials use, GDP and population during the 20th century," Ecological Economics, Elsevier, vol. 68(10), pages 2696-2705, August.
    12. Mariam Camarero & Juana Castillo & Andrés Picazo-Tadeo & Cecilio Tamarit, 2013. "Eco-Efficiency and Convergence in OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(1), pages 87-106, May.
    13. Christopher Kennedy & John Cuddihy & Joshua Engel‐Yan, 2007. "The Changing Metabolism of Cities," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 43-59, April.
    14. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    15. Lee, Chun-Lin & Huang, Shu-Li & Chan, Shih-Liang, 2009. "Synthesis and spatial dynamics of socio-economic metabolism and land use change of Taipei Metropolitan Region," Ecological Modelling, Elsevier, vol. 220(21), pages 2940-2959.
    16. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    17. Ghisellini, Patrizia & Zucaro, Amalia & Viglia, Silvio & Ulgiati, Sergio, 2014. "Monitoring and evaluating the sustainability of Italian agricultural system. An emergy decomposition analysis," Ecological Modelling, Elsevier, vol. 271(C), pages 132-148.
    18. Brown, Mark T. & Ulgiati, Sergio, 2011. "Understanding the global economic crisis: A biophysical perspective," Ecological Modelling, Elsevier, vol. 223(1), pages 4-13.
    19. Anderberg, Stefan, 1998. "Industrial metabolism and the linkages between economics, ethics and the environment," Ecological Economics, Elsevier, vol. 24(2-3), pages 311-320, February.
    20. Siche, J.R. & Agostinho, F. & Ortega, E. & Romeiro, A., 2008. "Sustainability of nations by indices: Comparative study between environmental sustainability index, ecological footprint and the emergy performance indices," Ecological Economics, Elsevier, vol. 66(4), pages 628-637, July.
    21. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    22. Liming Zhang & Bing Xue & Yong Geng & Wanxia Ren & Chengpeng Lu, 2014. "Emergy-Based City’s Sustainability and Decoupling Assessment: Indicators, Features and Findings," Sustainability, MDPI, vol. 6(2), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Zhang, Zilong & Chen, Xingpeng & Heck, Peter & Xue, Bing & Liu, Ye, 2015. "Empirical study on the environmental pressure versus economic growth in China during 1991–2012," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 182-193.
    3. Bing Xue & Mario Tobias, 2015. "Sustainability in China: Bridging Global Knowledge with Local Action," Sustainability, MDPI, vol. 7(4), pages 1-7, March.
    4. Chenyu Lu & Chunjuan Wang & Weili Zhu & Hengji Li & Yongjin Li & Chengpeng Lu, 2015. "GIS-Based Synthetic Measurement of Sustainable Development in Loess Plateau Ecologically Fragile Area—Case of Qingyang, China," Sustainability, MDPI, vol. 7(2), pages 1-19, February.
    5. Asghar, Sobia & Tsusaka, Takuji W. & Jourdain, Damien & Saqib, Shahab E. & Sasaki, Nophea, 2022. "Assessing the efficiency of smallholder sugarcane production: The case of Faisalabad, Pakistan," Agricultural Water Management, Elsevier, vol. 269(C).
    6. Zhanqi Wang & Ji Chai & Bingqing Li, 2016. "The Impacts of Land Use Change on Residents’ Living Based on Urban Metabolism: A Case Study in Yangzhou City of Jiangsu Province, China," Sustainability, MDPI, vol. 8(10), pages 1-17, October.
    7. Weibo Zhao & Dongxiao Niu, 2017. "Prediction of CO 2 Emission in China’s Power Generation Industry with Gauss Optimized Cuckoo Search Algorithm and Wavelet Neural Network Based on STIRPAT model with Ridge Regression," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    8. Sobia Asghar & Nophea Sasaki & Damien Jourdain & Takuji W. Tsusaka, 2018. "Levels of Technical, Allocative, and Groundwater Use Efficiency and the Factors Affecting the Allocative Efficiency of Wheat Farmers in Pakistan," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    9. Ting Chang & Degang Yang & Jinwei Huo & Fuqiang Xia & Zhiping Zhang, 2018. "Evaluation of Oasis Sustainability Based on Emergy and Decomposition Analysis," Sustainability, MDPI, vol. 10(6), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ting Chang & Degang Yang & Jinwei Huo & Fuqiang Xia & Zhiping Zhang, 2018. "Evaluation of Oasis Sustainability Based on Emergy and Decomposition Analysis," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
    2. Yang, Dewei & Kao, William Tze Ming & Zhang, Guoqin & Zhang, Nanyang, 2014. "Evaluating spatiotemporal differences and sustainability of Xiamen urban metabolism using emergy synthesis," Ecological Modelling, Elsevier, vol. 272(C), pages 40-48.
    3. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    4. Fishman, Tomer & Schandl, Heinz & Tanikawa, Hiroki, 2015. "The socio-economic drivers of material stock accumulation in Japan's prefectures," Ecological Economics, Elsevier, vol. 113(C), pages 76-84.
    5. Zhang, Yan & Liu, Hong & Chen, Bin, 2013. "Comprehensive evaluation of the structural characteristics of an urban metabolic system: Model development and a case study of Beijing," Ecological Modelling, Elsevier, vol. 252(C), pages 106-113.
    6. Junghwan Lee & Jinsoo Kim, 2021. "A Decomposition Analysis of the Korean Manufacturing Sector: Monetary vs. Physical Outputs," Sustainability, MDPI, vol. 13(11), pages 1-13, May.
    7. Fernández-Herrero, Laura & Duro, Juan Antonio, 2019. "What causes inequality in Material Productivity between countries?," Ecological Economics, Elsevier, vol. 162(C), pages 1-16.
    8. Pan, Hengyu & Geng, Yong & Jiang, Ping & Dong, Huijuan & Sun, Lu & Wu, Rui, 2018. "An emergy based sustainability evaluation on a combined landfill and LFG power generation system," Energy, Elsevier, vol. 143(C), pages 310-322.
    9. Chiu, Hao-Wei & Lee, Ying-Chieh & Huang, Shu-Li & Hsieh, Ya-Cheng, 2019. "How does peri-urbanization teleconnect remote areas? An emergy approach," Ecological Modelling, Elsevier, vol. 403(C), pages 57-69.
    10. Victoria Wojcik & Harald Dyckhoff & Sebastian Gutgesell, 2017. "The desirable input of undesirable factors in data envelopment analysis," Annals of Operations Research, Springer, vol. 259(1), pages 461-484, December.
    11. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    12. Amaral, Luís P. & Martins, Nélson & Gouveia, Joaquim B., 2016. "A review of emergy theory, its application and latest developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 882-888.
    13. Piñero, Pablo & Pérez-Neira, David & Infante-Amate, Juan & Chas-Amil, María L. & Doldán-García, Xoán R., 2020. "Unequal raw material exchange between and within countries: Galicia (NW Spain) as a core-periphery economy," Ecological Economics, Elsevier, vol. 172(C).
    14. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    15. Xu, Jin-Hua & Fan, Ying & Yu, Song-Min, 2014. "Energy conservation and CO2 emission reduction in China's 11th Five-Year Plan: A performance evaluation," Energy Economics, Elsevier, vol. 46(C), pages 348-359.
    16. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.
    17. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
    18. Tian, Xu & Bruckner, Martin & Geng, Yong & Bleischwitz, Raimund, 2019. "Trends and driving forces of China’s virtual land consumption and trade," Land Use Policy, Elsevier, vol. 89(C).
    19. Fei Wang & Changjian Wang & Yongxian Su & Lixia Jin & Yang Wang & Xinlin Zhang, 2017. "Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    20. Ang, B.W. & Su, Bin & Wang, H., 2016. "A spatial–temporal decomposition approach to performance assessment in energy and emissions," Energy Economics, Elsevier, vol. 60(C), pages 112-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:6:y:2014:i:12:p:8618-8638:d:42872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.