IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3398-d171759.html
   My bibliography  Save this article

Reverse Logistic Strategy for the Management of Tire Waste in Mexico and Russia: Review and Conceptual Model

Author

Listed:
  • Maria-Lizbeth Uriarte-Miranda

    (Postgraduate Department of Logistics and Supply Chain Management, Universidad Popular Autonoma del Estado de Puebla A.C.—UPAEP A.C., 72410 Puebla, Mexico
    Institute of New Materials and Technology, Ural Federal University—UrFU, 620002 Sverdlovsk, Russia
    These authors contributed equally to this work.)

  • Santiago-Omar Caballero-Morales

    (Postgraduate Department of Logistics and Supply Chain Management, Universidad Popular Autonoma del Estado de Puebla A.C.—UPAEP A.C., 72410 Puebla, Mexico
    These authors contributed equally to this work.)

  • Jose-Luis Martinez-Flores

    (Postgraduate Department of Logistics and Supply Chain Management, Universidad Popular Autonoma del Estado de Puebla A.C.—UPAEP A.C., 72410 Puebla, Mexico
    These authors contributed equally to this work.)

  • Patricia Cano-Olivos

    (Postgraduate Department of Logistics and Supply Chain Management, Universidad Popular Autonoma del Estado de Puebla A.C.—UPAEP A.C., 72410 Puebla, Mexico
    These authors contributed equally to this work.)

  • Anastasia-Alexandrovna Akulova

    (Institute of New Materials and Technology, Ural Federal University—UrFU, 620002 Sverdlovsk, Russia
    These authors contributed equally to this work.)

Abstract

Management of tire waste is an important aspect of sustainable development due to its environmental, economical and social impacts. Key aspects of Reverse Logistics (RL) and Green Logistics (GL), such as recycling, re-manufacturing and reusable packaging, can improve the management of tire waste and support sustainability. Although these processes have been performed with a high degree of efficiency in other countries such as Japan, Spain and Germany, the application in Mexico and Russia has faced setbacks due to the absence of guidelines regarding legislation, RL processes, and social responsibility. Within this context, the present work aims to develop an integrated RL model to improve on these processes by considering the RL models from Russia and Mexico. For this, a review focused on RL in Mexico, Russia, Japan and the European Union (EU) was performed. Hence, the integrated model considers regulations and policies performed in each country to assign responsibilities regarding RL processes for the management of tire waste. As discussed, the implementation of efficient RL processes for the management of tire waste depends of different social entities such as the user (customer), private and public companies, and manufacturing and state-of-the-art approaches to transform waste into different products (diversification) to consider the RL scheme as a total economic system.

Suggested Citation

  • Maria-Lizbeth Uriarte-Miranda & Santiago-Omar Caballero-Morales & Jose-Luis Martinez-Flores & Patricia Cano-Olivos & Anastasia-Alexandrovna Akulova, 2018. "Reverse Logistic Strategy for the Management of Tire Waste in Mexico and Russia: Review and Conceptual Model," Sustainability, MDPI, vol. 10(10), pages 1-25, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3398-:d:171759
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3398/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3398/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fleischmann, Mortiz & Krikke, Hans Ronald & Dekker, Rommert & Flapper, Simme Douwe P., 2000. "A characterisation of logistics networks for product recovery," Omega, Elsevier, vol. 28(6), pages 653-666, December.
    2. Cruz-Rivera, Reynaldo & Ertel, Jürgen, 2009. "Reverse logistics network design for the collection of End-of-Life Vehicles in Mexico," European Journal of Operational Research, Elsevier, vol. 196(3), pages 930-939, August.
    3. Abdelkader Sbihi & Richard Eglese, 2010. "Combinatorial optimization and Green Logistics," Annals of Operations Research, Springer, vol. 175(1), pages 159-175, March.
    4. Willard Price & Edgar D. Smith, 2006. "Waste tire recycling: environmental benefits and commercial challenges," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 6(3/4), pages 362-374.
    5. Barker, Theresa J. & Zabinsky, Zelda B., 2011. "A multicriteria decision making model for reverse logistics using analytical hierarchy process," Omega, Elsevier, vol. 39(5), pages 558-573, October.
    6. Machin, Einara Blanco & Pedroso, Daniel Travieso & de Carvalho, João Andrade, 2017. "Energetic valorization of waste tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 306-315.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Antonio Plaza-Úbeda & Emilio Abad-Segura & Jerónimo de Burgos-Jiménez & Antoaneta Boteva-Asenova & Luis Jesús Belmonte-Ureña, 2020. "Trends and New Challenges in the Green Supply Chain: The Reverse Logistics," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
    2. Mohammed Alkahtani & Aiman Ziout & Bashir Salah & Moath Alatefi & Abd Elatty E. Abd Elgawad & Ahmed Badwelan & Umar Syarif, 2021. "An Insight into Reverse Logistics with a Focus on Collection Systems," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    3. Raul Oltra-Badenes & Hermenegildo Gil-Gomez & Vicente Guerola-Navarro & Pau Vicedo, 2019. "Is It Possible to Manage the Product Recovery Processes in an ERP? Analysis of Functional Needs," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    4. Yu-Lan Wang & Chin-Nung Liao, 2023. "Assessment of Sustainable Reverse Logistic Provider Using the Fuzzy TOPSIS and MSGP Framework in Food Industry," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    5. Shyaamkrishnan Vigneswaran & Jihyeon Yun & Kyu-Dong Jeong & Moon-Sup Lee & Soon-Jae Lee, 2023. "Effect of Crumb Rubber Modifier Particle Size on Storage Stability of Rubberized Binders," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    6. César Augusto Hidalgo & Juan José Bustamante-Hernández, 2020. "A New Sustainable Geotechnical Reinforcement System from Old Tires: Experimental Evaluation by Pullout Tests," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
    7. Jania Astrid Saucedo Martinez & Abraham Mendoza & Maria del Rosario Alvarado Vazquez, 2019. "Collection of Solid Waste in Municipal Areas: Urban Logistics," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    8. Paulo Miguel Pereira & Castorina Silva Vieira, 2022. "A Literature Review on the Use of Recycled Construction and Demolition Materials in Unbound Pavement Applications," Sustainability, MDPI, vol. 14(21), pages 1-28, October.
    9. Victor Hugo Souza De Abreu & Mariane Gonzalez Da Costa & Valeria Xavier Da Costa & Tassia Faria De Assis & Andrea Souza Santos & Marcio de Almeida D’Agosto, 2022. "The Role of the Circular Economy in Road Transport to Mitigate Climate Change and Reduce Resource Depletion," Sustainability, MDPI, vol. 14(14), pages 1-26, July.
    10. Vitor William Batista Martins & Denilson Ricardo de Lucena Nunes & André Cristiano Silva Melo & Rayra Brandão & Antônio Erlindo Braga Júnior & Verônica de Menezes Nascimento Nagata, 2022. "Analysis of the Activities That Make Up the Reverse Logistics Processes and Their Importance for the Future of Logistics Networks: An Exploratory Study Using the TOPSIS Technique," Logistics, MDPI, vol. 6(3), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toso, Eli Angela V. & Alem, Douglas, 2014. "Effective location models for sorting recyclables in public management," European Journal of Operational Research, Elsevier, vol. 234(3), pages 839-860.
    2. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    3. S. Maryam Masoumi & Nima Kazemi & Salwa Hanim Abdul-Rashid, 2019. "Sustainable Supply Chain Management in the Automotive Industry: A Process-Oriented Review," Sustainability, MDPI, vol. 11(14), pages 1-30, July.
    4. De Rosa, Vincenzo & Gebhard, Marina & Hartmann, Evi & Wollenweber, Jens, 2013. "Robust sustainable bi-directional logistics network design under uncertainty," International Journal of Production Economics, Elsevier, vol. 145(1), pages 184-198.
    5. Qin, Zhongfeng & Ji, Xiaoyu, 2010. "Logistics network design for product recovery in fuzzy environment," European Journal of Operational Research, Elsevier, vol. 202(2), pages 479-490, April.
    6. Patricia Guarnieri & Lucio Camara e Silva & Bárbara de Oliveira Vieira, 2020. "How to Assess Reverse Logistics of e-Waste Considering a Multicriteria Perspective? A Model Proposition," Logistics, MDPI, vol. 4(4), pages 1-31, October.
    7. Zhou, Xiaoguang & Zhou, Yanhui, 2015. "Designing a multi-echelon reverse logistics operation and network: A case study of office paper in Beijing," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 58-69.
    8. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    9. Pang, Jifang & Liang, Jiye, 2012. "Evaluation of the results of multi-attribute group decision-making with linguistic information," Omega, Elsevier, vol. 40(3), pages 294-301.
    10. Özceylan, Eren & Paksoy, Turan & Bektaş, Tolga, 2014. "Modeling and optimizing the integrated problem of closed-loop supply chain network design and disassembly line balancing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 142-164.
    11. Zhiguo Wang & Lufei Huang & Cici Xiao He, 2021. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 785-812, November.
    12. Caiado, Nathália & Guarnieri, Patricia & Xavier, Lúcia Helena & de Lorena Diniz Chaves, Gisele, 2017. "A characterization of the Brazilian market of reverse logistic credits (RLC) and an analogy with the existing carbon credit market," Resources, Conservation & Recycling, Elsevier, vol. 118(C), pages 47-59.
    13. De Giovanni, Pietro & Zaccour, Georges, 2014. "A two-period game of a closed-loop supply chain," European Journal of Operational Research, Elsevier, vol. 232(1), pages 22-40.
    14. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    15. de la Fuente, M. Victoria & Ros, Lorenzo & Cardos, Manuel, 2008. "Integrating Forward and Reverse Supply Chains: Application to a metal-mechanic company," International Journal of Production Economics, Elsevier, vol. 111(2), pages 782-792, February.
    16. Hong, I-Hsuan & Ammons, Jane C. & Realff, Matthew J., 2008. "Decentralized decision-making and protocol design for recycled material flows," International Journal of Production Economics, Elsevier, vol. 116(2), pages 325-337, December.
    17. Junwei Gan & Li Luo, 2017. "Using DEMATEL and Intuitionistic Fuzzy Sets to Identify Critical Factors Influencing the Recycling Rate of End-Of-Life Vehicles in China," Sustainability, MDPI, vol. 9(10), pages 1-22, October.
    18. Haji Vahabzadeh, Ali & Asiaei, Arash & Zailani, Suhaiza, 2015. "Reprint of “Green decision-making model in reverse logistics using FUZZY-VIKOR method”," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 334-347.
    19. Oscar Dominguez & Angel A. Juan & Barry Barrios & Javier Faulin & Alba Agustin, 2016. "Using biased randomization for solving the two-dimensional loading vehicle routing problem with heterogeneous fleet," Annals of Operations Research, Springer, vol. 236(2), pages 383-404, January.
    20. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2016. "Outsourcing decisions in reverse logistics: Sustainable balanced scorecard and graph theoretic approach," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 41-53.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3398-:d:171759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.