IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v7y2024i4p64-1098d1496741.html
   My bibliography  Save this article

Cross-Country Assessment of Socio-Ecological Drivers of COVID-19 Dynamics in Africa: A Spatial Modelling Approach

Author

Listed:
  • Kolawole Valère Salako

    (Laboratoire de Biomathématiques et d’Estimations Forestières, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Cotonou 04 BP 1525, Benin)

  • Akoeugnigan Idelphonse Sode

    (Laboratoire de Biomathématiques et d’Estimations Forestières, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Cotonou 04 BP 1525, Benin)

  • Aliou Dicko

    (Laboratoire de Biomathématiques et d’Estimations Forestières, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Cotonou 04 BP 1525, Benin)

  • Eustache Ayédèguè Alaye

    (Laboratoire de Biomathématiques et d’Estimations Forestières, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Cotonou 04 BP 1525, Benin)

  • Martin Wolkewitz

    (Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, 79104 Freiburg, Germany)

  • Romain Glèlè Kakaï

    (Laboratoire de Biomathématiques et d’Estimations Forestières, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Cotonou 04 BP 1525, Benin)

Abstract

Understanding how countries’ socio-economic, environmental, health status, and climate factors have influenced the dynamics of COVID-19 is essential for public health, particularly in Africa. This study explored the relationships between African countries’ COVID-19 cases and deaths and their socio-economic, environmental, health, clinical, and climate variables. It compared the performance of Ordinary Least Square (OLS) regression, the spatial lag model (SLM), the spatial error model (SEM), and the conditional autoregressive model (CAR) using statistics such as the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Root Mean Square Error (RMSE), and coefficient of determination ( R 2 ). Results showed that the SEM with the 10-nearest neighbours matrix weights performed better for the number of cases, while the SEM with the maximum distance matrix weights performed better for the number of deaths. For the cases, the number of tests followed by the adjusted savings, Gross Domestic Product (GDP) per capita, dependence ratio, and annual temperature were the strongest covariates. For deaths, the number of tests followed by malaria prevalence, prevalence of communicable diseases, adjusted savings, GDP, dependence ratio, Human Immunodeficiency Virus (HIV) prevalence, and moisture index of the moistest quarter play a critical role in explaining disparities across countries. This study illustrates the importance of accounting for spatial autocorrelation in modelling the dynamics of the disease while highlighting the role of countries’ specific factors in driving its dynamics.

Suggested Citation

  • Kolawole Valère Salako & Akoeugnigan Idelphonse Sode & Aliou Dicko & Eustache Ayédèguè Alaye & Martin Wolkewitz & Romain Glèlè Kakaï, 2024. "Cross-Country Assessment of Socio-Ecological Drivers of COVID-19 Dynamics in Africa: A Spatial Modelling Approach," Stats, MDPI, vol. 7(4), pages 1-15, October.
  • Handle: RePEc:gam:jstats:v:7:y:2024:i:4:p:64-1098:d:1496741
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/7/4/64/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/7/4/64/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samuel O. M. Manda & Timotheus Darikwa & Tshifhiwa Nkwenika & Robert Bergquist, 2021. "A Spatial Analysis of COVID-19 in African Countries: Evaluating the Effects of Socio-Economic Vulnerabilities and Neighbouring," IJERPH, MDPI, vol. 18(20), pages 1-15, October.
    2. Bivand, Roger & Piras, Gianfranco, 2015. "Comparing Implementations of Estimation Methods for Spatial Econometrics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i18).
    3. Luc Anselin & Daniel Arribas-Bel, 2013. "Spatial fixed effects and spatial dependence in a single cross-section," Papers in Regional Science, Wiley Blackwell, vol. 92(1), pages 3-17, March.
    4. Ye Fan & Ming Fang & Xin Zhang & Yongda Yu, 2023. "Will the economic growth benefit public health? Health vulnerability, urbanization and COVID-19 in the USA," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 70(1), pages 81-99, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guohuan Su & Adam Mertel & Sébastien Brosse & Justin M. Calabrese, 2023. "Species invasiveness and community invasibility of North American freshwater fish fauna revealed via trait-based analysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Ilir Nase & Jim Berry & Alastair Adair, 2016. "Impact of quality-led design on real estate value: a spatiotemporal analysis of city centre apartments," Journal of Property Research, Taylor & Francis Journals, vol. 33(4), pages 309-331, October.
    3. Agarwal, Sumit & Satyanarain, Rengarajan & Sing, Tien Foo & Vollmer, Derek, 2016. "Effects of construction activities on residential electricity consumption: Evidence from Singapore's public housing estates," Energy Economics, Elsevier, vol. 55(C), pages 101-111.
    4. Kuschnig, Nikolas, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Paper Series 318, WU Vienna University of Economics and Business.
    5. Chakir, Raja & Lungarska, Anna, 2015. "Agricultural land rents in land use models: a spatial econometric analysis," 150th Seminar, October 22-23, 2015, Edinburgh, Scotland 212641, European Association of Agricultural Economists.
    6. Marcos-Martinez, Raymundo & Measham, Thomas G. & Fleming-Muñoz, David A., 2019. "Economic impacts of early unconventional gas mining: Lessons from the coal seam gas industry in New South Wales, Australia," Energy Policy, Elsevier, vol. 125(C), pages 338-346.
    7. Meilan An & Jeffrey Vitale & Kwideok Han & John N. Ng’ombe & Inbae Ji, 2021. "Effects of Spatial Characteristics on the Spread of the Highly Pathogenic Avian Influenza (HPAI) in Korea," IJERPH, MDPI, vol. 18(8), pages 1-13, April.
    8. Demidova, Olga, 2021. "Methods of spatial econometrics and evaluation of government programs effectiveness," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 64, pages 107-134.
    9. Biel E. Metz, 2015. "Effect of Distance to Schooling on Home Prices," The Review of Regional Studies, Southern Regional Science Association, vol. 45(2), pages 151-171, Fall.
    10. Charlene Marie Kalenkoski, 2016. "The effects of minimum wages on youth employment and income," IZA World of Labor, Institute of Labor Economics (IZA), pages 243-243, March.
    11. Biarnès, Anne & Bailly, Jean-Stéphane & Mekki, Insaf & Ferchichi, Intissar, 2021. "Land use mosaics in Mediterranean rainfed agricultural areas as an indicator of collective crop successions: Insights from a land use time series study conducted in Cap Bon, Tunisia," Agricultural Systems, Elsevier, vol. 194(C).
    12. Iacopo Odoardi & Donatella Furia & Piera Cascioli, 2021. "Can social support compensate for missing family support? An examination of dropout rates in Italy," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(1), pages 121-139, February.
    13. Cornwall, Gary J. & Parent, Olivier, 2017. "Embracing heterogeneity: the spatial autoregressive mixture model," Regional Science and Urban Economics, Elsevier, vol. 64(C), pages 148-161.
    14. Ozgun, Burcu & Broekel, Tom, 2021. "The geography of innovation and technology news - An empirical study of the German news media," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    15. Ansofino, Anas & Zusmelia, Zubir, 2023. "Global Competitiveness of Trade in the West Coast of Sumatra from the Perspective of the Agglomeration of Economic Approach," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 15(2), June.
    16. Pinto, Allan & Griffin, Terry W., 2022. "Detecting bubbles via single time-series variable: applying spatial specification tests to farmland values," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322534, Agricultural and Applied Economics Association.
    17. Jan Paul Baginski & Christoph Weber, "undated". "Coherent estimations for residential photovoltaic uptake in Germany including spatial spillover effects," EWL Working Papers 1902, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
    18. Małgorzata Dudzińska & Marta Gwiaździńska-Goraj & Aleksandra Jezierska-Thöle, 2022. "Social Factors as Major Determinants of Rural Development Variation for Predicting Epidemic Vulnerability: A Lesson for the Future," IJERPH, MDPI, vol. 19(21), pages 1-24, October.
    19. Gianfranco Piras & Mauricio Sarrias, 2023. "Heterogeneous spatial models in R: spatial regimes models," Journal of Spatial Econometrics, Springer, vol. 4(1), pages 1-32, December.
    20. Vinícius Diniz Mayrink & Flávio Bambirra Gonçalves, 2017. "A Bayesian hidden Markov mixture model to detect overexpressed chromosome regions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 387-412, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:7:y:2024:i:4:p:64-1098:d:1496741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.