IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v7y2024i2p22-372d1379293.html
   My bibliography  Save this article

Bayesian Mediation Analysis with an Application to Explore Racial Disparities in the Diagnostic Age of Breast Cancer

Author

Listed:
  • Wentao Cao

    (Louisiana Department of Education, 1201 N 3rd St, Baton Rouge, LA 70802, USA)

  • Joseph Hagan

    (Department of Pediatrics, Baylor College of Medicine, 1 Baylor Plz, Houston, TX 77030, USA)

  • Qingzhao Yu

    (School of Public Health, Louisiana State University Health–New Orleans, 3rd Floor, 2020 Graviers Street, New Orleans, LA 70112, USA)

Abstract

A mediation effect refers to the effect transmitted by a mediator intervening in the relationship between an exposure variable and a response variable. Mediation analysis is widely used to identify significant mediators and to make inferences on their effects. The Bayesian method allows researchers to incorporate prior information from previous knowledge into the analysis, deal with the hierarchical structure of variables, and estimate the quantities of interest from the posterior distributions. This paper proposes three Bayesian mediation analysis methods to make inferences on mediation effects. Our proposed methods are the following: (1) the function of coefficients method; (2) the product of partial difference method; and (3) the re-sampling method. We apply these three methods to explore racial disparities in the diagnostic age of breast cancer patients in Louisiana. We found that African American (AA) patients are diagnosed at an average of 4.37 years younger compared with Caucasian (CA) patients (57.40 versus 61.77, p < 0.0001). We also found that the racial disparity can be explained by patients’ insurance (12.90%), marital status (17.17%), cancer stage (3.27%), and residential environmental factors, including the percent of the population under age 18 (3.07%) and the environmental factor of intersection density (9.02%).

Suggested Citation

  • Wentao Cao & Joseph Hagan & Qingzhao Yu, 2024. "Bayesian Mediation Analysis with an Application to Explore Racial Disparities in the Diagnostic Age of Breast Cancer," Stats, MDPI, vol. 7(2), pages 1-12, April.
  • Handle: RePEc:gam:jstats:v:7:y:2024:i:2:p:22-372:d:1379293
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/7/2/22/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/7/2/22/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas R. Ten Have & Marshall M. Joffe & Kevin G. Lynch & Gregory K. Brown & Stephen A. Maisto & Aaron T. Beck, 2007. "Causal Mediation Analyses with Rank Preserving Models," Biometrics, The International Biometric Society, vol. 63(3), pages 926-934, September.
    2. Sassi, F. & Luft, H.S. & Guadagnoli, E., 2006. "Reducing racial/ethnic disparities in female breast cancer: Screening rates and stage at diagnosis," American Journal of Public Health, American Public Health Association, vol. 96(12), pages 2165-2172.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Dippel & Robert Gold & Stephan Heblich & Rodrigo Pinto, 2017. "Instrumental Variables and Causal Mechanisms: Unpacking the Effect of Trade on Workers and Voters," CESifo Working Paper Series 6816, CESifo.
    2. Martin Huber & Yu‐Chin Hsu & Ying‐Ying Lee & Layal Lettry, 2020. "Direct and indirect effects of continuous treatments based on generalized propensity score weighting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 814-840, November.
    3. Martin Huber & Michael Lechner & Giovanni Mellace, 2017. "Why Do Tougher Caseworkers Increase Employment? The Role of Program Assignment as a Causal Mechanism," The Review of Economics and Statistics, MIT Press, vol. 99(1), pages 180-183, March.
    4. Markus Frölich & Martin Huber, 2017. "Direct and indirect treatment effects–causal chains and mediation analysis with instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1645-1666, November.
    5. Martin Huber & Michael Lechner & Giovanni Mellace, 2016. "The Finite Sample Performance of Estimators for Mediation Analysis Under Sequential Conditional Independence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 139-160, January.
    6. Stephens Alisa & Keele Luke & Joffe Marshall, 2016. "Generalized Structural Mean Models for Evaluating Depression as a Post-treatment Effect Modifier of a Jobs Training Intervention," Journal of Causal Inference, De Gruyter, vol. 4(2), pages 1-17, September.
    7. Zhao, Yi & Luo, Xi, 2023. "Multilevel mediation analysis with structured unmeasured mediator-outcome confounding," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    8. Joffe Marshall M & Small Dylan & Ten Have Thomas & Brunelli Steve & Feldman Harold I, 2008. "Extended Instrumental Variables Estimation for Overall Effects," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-22, April.
    9. Stephens Alisa & Joffe Marshall & Keele Luke, 2016. "Generalized Structural Mean Models for Evaluating Depression as a Post-treatment Effect Modifier of a Jobs Training Intervention," Journal of Causal Inference, De Gruyter, vol. 4(2), pages 1, September.
    10. Helmut Farbmacher & Martin Huber & Lukáš Lafférs & Henrika Langen & Martin Spindler, 2022. "Causal mediation analysis with double machine learning [Mediation analysis via potential outcomes models]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 277-300.
    11. Jing Cheng & Dylan S. Small, 2021. "Semiparametric models and inference for the effect of a treatment when the outcome is nonnegative with clumping at zero," Biometrics, The International Biometric Society, vol. 77(4), pages 1187-1201, December.
    12. Jing Huang & Ying Yuan & David Wetter, 2019. "Latent Class Dynamic Mediation Model with Application to Smoking Cessation Data," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 1-18, March.
    13. Cheng Zheng & Xiao-Hua Zhou, 2017. "Causal mediation analysis on failure time outcome without sequential ignorability," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 533-559, October.
    14. Martin A. Lindquist, 2012. "Functional Causal Mediation Analysis With an Application to Brain Connectivity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1297-1309, December.
    15. Martin Huber & Lukáš Lafférs, 2022. "Bounds on direct and indirect effects under treatment/mediator endogeneity and outcome attrition," Econometric Reviews, Taylor & Francis Journals, vol. 41(10), pages 1141-1163, November.
    16. Cai, Xizhen & Zhu, Yeying & Huang, Yuan & Ghosh, Debashis, 2022. "High-dimensional causal mediation analysis based on partial linear structural equation models," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    17. Martin Huber & Anna Solovyeva, 2020. "Direct and Indirect Effects under Sample Selection and Outcome Attrition," Econometrics, MDPI, vol. 8(4), pages 1-25, December.
    18. Qingzhao Yu & Kaelen L. Medeiros & Xiaocheng Wu & Roxanne E. Jensen, 2018. "Nonlinear Predictive Models for Multiple Mediation Analysis: With an Application to Explore Ethnic Disparities in Anxiety and Depression Among Cancer Survivors," Psychometrika, Springer;The Psychometric Society, vol. 83(4), pages 991-1006, December.
    19. Laura Forastiere & Fabrizia Mealli & Tyler J. VanderWeele, 2016. "Identification and Estimation of Causal Mechanisms in Clustered Encouragement Designs: Disentangling Bed Nets Using Bayesian Principal Stratification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 510-525, April.
    20. Viviana Celli, 2022. "Causal mediation analysis in economics: Objectives, assumptions, models," Journal of Economic Surveys, Wiley Blackwell, vol. 36(1), pages 214-234, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:7:y:2024:i:2:p:22-372:d:1379293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.