IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v7y2024i1p20-349d1360387.html
   My bibliography  Save this article

A Note on Simultaneous Confidence Intervals for Direct, Indirect and Synthetic Estimators

Author

Listed:
  • Christophe Quentin Valvason

    (Geneva School of Economics and Management, University of Geneva, 40 Boulevard du Pont d’Arve, 1204 Geneva, Switzerland)

  • Stefan Sperlich

    (Geneva School of Economics and Management, University of Geneva, 40 Boulevard du Pont d’Arve, 1204 Geneva, Switzerland)

Abstract

Direct, indirect and synthetic estimators have a long history in official statistics. While model-based or model-assisted approaches have become very popular, direct and indirect estimators remain the predominant standard and are therefore important tools in practice. This is mainly due to their simplicity, including low data requirements, assumptions and straightforward inference. With the increasing use of domain estimates in policy, the demands on these tools have also increased. Today, they are frequently used for comparative statistics. This requires appropriate tools for simultaneous inference. We study devices for constructing simultaneous confidence intervals and show that simple tools like the Bonferroni correction can easily fail. In contrast, uniform inference based on max-type statistics in combination with bootstrap methods, appropriate for finite populations, work reasonably well. We illustrate our methods with frequently applied estimators of totals and means.

Suggested Citation

  • Christophe Quentin Valvason & Stefan Sperlich, 2024. "A Note on Simultaneous Confidence Intervals for Direct, Indirect and Synthetic Estimators," Stats, MDPI, vol. 7(1), pages 1-17, March.
  • Handle: RePEc:gam:jstats:v:7:y:2024:i:1:p:20-349:d:1360387
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/7/1/20/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/7/1/20/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nikos Tzavidis & Li‐Chun Zhang & Angela Luna & Timo Schmid & Natalia Rojas‐Perilla, 2018. "From start to finish: a framework for the production of small area official statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 927-979, October.
    2. Katarzyna Reluga & María-José Lombardía & Stefan Sperlich, 2023. "Simultaneous Inference for Empirical Best Predictors With a Poverty Study in Small Areas," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 583-595, January.
    3. Joseph P. Romano & Michael Wolf, 2005. "Exact and Approximate Stepdown Methods for Multiple Hypothesis Testing," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 94-108, March.
    4. Peter Kramlinger & Tatyana Krivobokova & Stefan Sperlich, 2023. "Marginal and Conditional Multiple Inference for Linear Mixed Model Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(544), pages 2344-2355, October.
    5. Little R.J., 2004. "To Model or Not To Model? Competing Modes of Inference for Finite Population Sampling," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 546-556, January.
    6. Katarzyna Reluga & María‐José Lombardía & Stefan Sperlich, 2023. "Simultaneous inference for linear mixed model parameters with an application to small area estimation," International Statistical Review, International Statistical Institute, vol. 91(2), pages 193-217, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reluga, Katarzyna & Lombardía, María-José & Sperlich, Stefan, 2024. "Bootstrap-based statistical inference for linear mixed effects under misspecifications," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
    2. Katarzyna Reluga & María‐José Lombardía & Stefan Sperlich, 2023. "Simultaneous inference for linear mixed model parameters with an application to small area estimation," International Statistical Review, International Statistical Institute, vol. 91(2), pages 193-217, August.
    3. Fabian Kosse & Thomas Deckers & Pia Pinger & Hannah Schildberg-Hörisch & Armin Falk, 2020. "The Formation of Prosociality: Causal Evidence on the Role of Social Environment," Journal of Political Economy, University of Chicago Press, vol. 128(2), pages 434-467.
    4. Barrera, Oscar & Guriev, Sergei & Henry, Emeric & Zhuravskaya, Ekaterina, 2020. "Facts, alternative facts, and fact checking in times of post-truth politics," Journal of Public Economics, Elsevier, vol. 182(C).
    5. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    6. Hızıroğlu Aygün, Aysun & Kırdar, Murat Güray & Koyuncu, Murat & Stoeffler, Quentin, 2024. "Keeping refugee children in school and out of work: Evidence from the world's largest humanitarian cash transfer program," Journal of Development Economics, Elsevier, vol. 168(C).
    7. Cygan-Rehm, Kamila & Karbownik, Krzysztof, 2022. "The effects of incentivizing early prenatal care on infant health," Journal of Health Economics, Elsevier, vol. 83(C).
    8. Cindy Frascolla & Guillaume Lecuelle & Pascal Schlich & Hervé Cardot, 2022. "Two sample tests for Semi-Markov processes with parametric sojourn time distributions: an application in sensory analysis," Computational Statistics, Springer, vol. 37(5), pages 2553-2580, November.
    9. Kunihama, T. & Herring, A.H. & Halpern, C.T. & Dunson, D.B., 2016. "Nonparametric Bayes modeling with sample survey weights," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 41-48.
    10. Marivoet, Wim & De Herdt, Tom, 2017. "From figures to facts: making sense of socio-economic surveys in the Democratic Republic of the Congo (DRC)," IOB Analyses & Policy Briefs 23, Universiteit Antwerpen, Institute of Development Policy (IOB).
    11. Agostinelli, Francesco & Avitabile, Ciro & Bobba, Matteo, 2021. "Enhancing Human Capital in Children: A Case Study on Scaling," TSE Working Papers 21-1196, Toulouse School of Economics (TSE), revised Oct 2023.
    12. Orla Doyle & Colm Harmon & James J Heckman & Caitriona Logue & Seong Hyeok Moon, 2013. "Measuring Investment in Human Capital Formation: An Experimental Analysis of Early Life Outcomes," Working Papers 201310, School of Economics, University College Dublin.
    13. Ann P. Bartel & Maya Rossin-Slater & Christopher J. Ruhm & Meredith Slopen & Jane Waldfogel, 2021. "The Impact of Paid Family Leave on Employers: Evidence from New York," NBER Working Papers 28672, National Bureau of Economic Research, Inc.
    14. Gabriella Conti & Christopher Hansman & James J. Heckman & Matthew F. X. Novak & Angela Ruggiero & Stephen J. Suomi, 2012. "Primate Evidence on the Late Health Effects of Early Life Adversity," Working Papers 2012-008, Human Capital and Economic Opportunity Working Group.
    15. Samuel Dodini, 2023. "Insurance Subsidies, the Affordable Care Act, and Financial Stability," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 42(1), pages 97-136, January.
    16. Monique De Haan & Magnus Stubhaug, 2024. "The Causal Component in the Intergenerational Transmission of Income," CESifo Working Paper Series 11395, CESifo.
    17. Clarke, Damian & Mühlrad, Hanna, 2021. "Abortion laws and women’s health," Journal of Health Economics, Elsevier, vol. 76(C).
    18. J. Andrew Royle, 2009. "Analysis of Capture–Recapture Models with Individual Covariates Using Data Augmentation," Biometrics, The International Biometric Society, vol. 65(1), pages 267-274, March.
    19. Krekel, Christian & De Neve, Jan-Emmanuel & Fancourt, Daisy & Layard, Richard, 2021. "A local community course that raises wellbeing and pro-sociality: Evidence from a randomised controlled trial," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 322-336.
    20. Gonzalo Nunez-Chaim & Henry G. Overman & Capucine Riom, 2024. "Does subsidising business advice improve firm performance? Evidence from a large RCT," CEP Discussion Papers dp1977, Centre for Economic Performance, LSE.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:7:y:2024:i:1:p:20-349:d:1360387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.