IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i12p3887-3897.html
   My bibliography  Save this article

Shape and change point analyses of the Birnbaum–Saunders-t hazard rate and associated estimation

Author

Listed:
  • Azevedo, Cecilia
  • Leiva, Víctor
  • Athayde, Emilia
  • Balakrishnan, N.

Abstract

The hazard rate is a statistical indicator commonly used in lifetime analysis. The Birnbaum–Saunders (BS) model is a life distribution originated from a problem pertaining to material fatigue that has been applied to diverse fields. The BS model relates the total time until failure to some type of cumulative damage that is normally distributed. The generalized BS (GBS) distribution is a class of positively skewed models with lighter and heavier tails than the BS distribution. Particular cases of GBS distributions are the BS and BS-Student-t (BS-t) models. In this paper, we discuss shape and change point analyses for the hazard rate of the BS-t distribution. In addition, we evaluate the performance of the maximum likelihood and moment estimators of this change point using Monte Carlo methods. We also present an application with a real life data set useful for survival analysis, which shows the convenience of knowing such instant of change for establishing a reduction in the dose and, as a consequence, in the cost of the treatment.

Suggested Citation

  • Azevedo, Cecilia & Leiva, Víctor & Athayde, Emilia & Balakrishnan, N., 2012. "Shape and change point analyses of the Birnbaum–Saunders-t hazard rate and associated estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3887-3897.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:12:p:3887-3897
    DOI: 10.1016/j.csda.2012.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312002046
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barros, Michelli & Paula, Gilberto A. & Leiva, Víctor, 2009. "An R implementation for generalized Birnbaum-Saunders distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1511-1528, February.
    2. Gilberto A. Paula & Víctor Leiva & Michelli Barros & Shuangzhe Liu, 2012. "Robust statistical modeling using the Birnbaum‐Saunders‐t distribution applied to insurance," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 28(1), pages 16-34, January.
    3. Vanegas, Luis Hernando & Rondón, Luz Marina & Cysneiros, Francisco José A., 2012. "Diagnostic procedures in Birnbaum–Saunders nonlinear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1662-1680.
    4. Samuel Kotz & Víctor Leiva & Antonio Sanhueza, 2010. "Two New Mixture Models Related to the Inverse Gaussian Distribution," Methodology and Computing in Applied Probability, Springer, vol. 12(1), pages 199-212, March.
    5. V�ctor Leiva & Emilia Athayde & Cecilia Azevedo & Carolina Marchant, 2011. "Modeling wind energy flux by a Birnbaum--Saunders distribution with an unknown shift parameter," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2819-2838, February.
    6. Leiva, Victor & Barros, Michelli & Paula, Gilberto A. & Galea, Manuel, 2007. "Influence diagnostics in log-Birnbaum-Saunders regression models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5694-5707, August.
    7. Kundu, Debasis & Kannan, Nandini & Balakrishnan, N., 2008. "On the hazard function of Birnbaum-Saunders distribution and associated inference," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2692-2702, January.
    8. Cordeiro, Gauss M. & Lemonte, Artur J., 2011. "The [beta]-Birnbaum-Saunders distribution: An improved distribution for fatigue life modeling," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1445-1461, March.
    9. Vilca, Filidor & Santana, Lucia & Leiva, Víctor & Balakrishnan, N., 2011. "Estimation of extreme percentiles in Birnbaum-Saunders distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1665-1678, April.
    10. Cysneiros, Audrey H.M.A. & Cribari-Neto, Francisco & Araújo Jr., Carlos A.G., 2008. "On Birnbaum-Saunders inference," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4939-4950, July.
    11. Bhatti, Chad R., 2010. "The Birnbaum–Saunders autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(10), pages 2062-2078.
    12. Leiva, Victor & Riquelme, Marco & Balakrishnan, N. & Sanhueza, Antonio, 2008. "Lifetime analysis based on the generalized Birnbaum-Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2079-2097, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Mimi & Hu, Qingpei & Xie, Min & Yu, Dan, 2014. "Lower confidence limit for reliability based on grouped data using a quantile-filling algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 96-111.
    2. Jimmy Reyes & Jaime Arrué & Víctor Leiva & Carlos Martin-Barreiro, 2021. "A New Birnbaum–Saunders Distribution and Its Mathematical Features Applied to Bimodal Real-World Data from Environment and Medicine," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    3. Danúbia R. Cunha & Roberto Vila & Helton Saulo & Rodrigo N. Fernandez, 2020. "A General Family of Autoregressive Conditional Duration Models Applied to High-Frequency Financial Data," JRFM, MDPI, vol. 13(3), pages 1-20, March.
    4. Kundu, Debasis & Balakrishnan, N. & Jamalizadeh, Ahad, 2013. "Generalized multivariate Birnbaum–Saunders distributions and related inferential issues," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 230-244.
    5. N. Balakrishnan & Xiaojun Zhu, 2015. "Inference for the bivariate Birnbaum–Saunders lifetime regression model and associated inference," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 853-872, October.
    6. Marchant, Carolina & Bertin, Karine & Leiva, Víctor & Saulo, Helton, 2013. "Generalized Birnbaum–Saunders kernel density estimators and an analysis of financial data," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 1-15.
    7. Michelli Barros & Manuel Galea & Víctor Leiva & Manoel Santos-Neto, 2018. "Generalized Tobit models: diagnostics and application in econometrics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 145-167, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ai-Ping & Xie, Feng-Chang, 2012. "Diagnostics for a class of survival regression models with heavy-tailed errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4204-4214.
    2. Marchant, Carolina & Bertin, Karine & Leiva, Víctor & Saulo, Helton, 2013. "Generalized Birnbaum–Saunders kernel density estimators and an analysis of financial data," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 1-15.
    3. Fierro, Raúl & Leiva, Víctor & Ruggeri, Fabrizio & Sanhueza, Antonio, 2013. "On a Birnbaum–Saunders distribution arising from a non-homogeneous Poisson process," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1233-1239.
    4. Bhatti, Chad R., 2010. "The Birnbaum–Saunders autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(10), pages 2062-2078.
    5. Robert G. Aykroyd & Víctor Leiva & Carolina Marchant, 2018. "Multivariate Birnbaum-Saunders Distributions: Modelling and Applications," Risks, MDPI, vol. 6(1), pages 1-25, March.
    6. V�ctor Leiva & Emilia Athayde & Cecilia Azevedo & Carolina Marchant, 2011. "Modeling wind energy flux by a Birnbaum--Saunders distribution with an unknown shift parameter," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2819-2838, February.
    7. Kundu, Debasis & Balakrishnan, N. & Jamalizadeh, Ahad, 2013. "Generalized multivariate Birnbaum–Saunders distributions and related inferential issues," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 230-244.
    8. Zhang, Mimi & Hu, Qingpei & Xie, Min & Yu, Dan, 2014. "Lower confidence limit for reliability based on grouped data using a quantile-filling algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 96-111.
    9. N. Balakrishnan & Xiaojun Zhu, 2015. "Inference for the bivariate Birnbaum–Saunders lifetime regression model and associated inference," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 853-872, October.
    10. Naderi, Mehrdad & Hashemi, Farzane & Bekker, Andriette & Jamalizadeh, Ahad, 2020. "Modeling right-skewed financial data streams: A likelihood inference based on the generalized Birnbaum–Saunders mixture model," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    11. Saulo, Helton & Balakrishnan, Narayanaswamy & Vila, Roberto, 2023. "On a quantile autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 425-448.
    12. Castillo, Nabor O. & Gómez, Héctor W. & Leiva, Víctor & Sanhueza, Antonio, 2011. "On the Fernández-Steel distribution: Inference and application," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2951-2961, November.
    13. Barros, Michelli & Paula, Gilberto A. & Leiva, Víctor, 2009. "An R implementation for generalized Birnbaum-Saunders distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1511-1528, February.
    14. Ortega, Edwin M.M. & Cordeiro, Gauss M. & Lemonte, Artur J., 2012. "A log-linear regression model for the β-Birnbaum–Saunders distribution with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 698-718.
    15. Helton Saulo & Alan Dasilva & Víctor Leiva & Luis Sánchez & Hanns de la Fuente‐Mella, 2022. "Log‐symmetric quantile regression models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(2), pages 124-163, May.
    16. V�ctor Leiva & Carolina Marchant & Helton Saulo & Muhammad Aslam & Fernando Rojas, 2014. "Capability indices for Birnbaum-Saunders processes applied to electronic and food industries," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(9), pages 1881-1902, September.
    17. Fang, Longxiang & Zhu, Xiaojun & Balakrishnan, N., 2016. "Stochastic comparisons of parallel and series systems with heterogeneous Birnbaum–Saunders components," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 131-136.
    18. Lemonte, Artur J., 2013. "A new extended Birnbaum–Saunders regression model for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 34-50.
    19. Michelli Barros & Manuel Galea & Manuel González & Víctor Leiva, 2010. "Influence diagnostics in the tobit censored response model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(3), pages 379-397, August.
    20. Helton Saulo & Jeremias Leão & Víctor Leiva & Robert G. Aykroyd, 2019. "Birnbaum–Saunders autoregressive conditional duration models applied to high-frequency financial data," Statistical Papers, Springer, vol. 60(5), pages 1605-1629, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:12:p:3887-3897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.