IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v4y2021i1p6-85d482984.html
   My bibliography  Save this article

Fusing Nature with Computational Science for Optimal Signal Extraction

Author

Listed:
  • Hossein Hassani

    (Research Institute of Energy Management and Planning, University of Tehran, Tehran 1417466191, Iran
    These authors contributed equally to this work.)

  • Mohammad Reza Yeganegi

    (Department of Accounting, Islamic Azad University, Central Tehran Branch, Tehran 1955847781, Iran
    These authors contributed equally to this work.)

  • Xu Huang

    (Leicester Castle Business School, De Montfort University, Leicester LE1 9BH, UK
    These authors contributed equally to this work.)

Abstract

Fusing nature with computational science has been proved paramount importance and researchers have also shown growing enthusiasm on inventing and developing nature inspired algorithms for solving complex problems across subjects. Inevitably, these advancements have rapidly promoted the development of data science, where nature inspired algorithms are changing the traditional way of data processing. This paper proposes the hybrid approach, namely SSA-GA, which incorporates the optimization merits of genetic algorithm (GA) for the advancements of Singular Spectrum Analysis (SSA). This approach further boosts the performance of SSA forecasting via better and more efficient grouping. Given the performances of SSA-GA on 100 real time series data across various subjects, this newly proposed SSA-GA approach is proved to be computationally efficient and robust with improved forecasting performance.

Suggested Citation

  • Hossein Hassani & Mohammad Reza Yeganegi & Xu Huang, 2021. "Fusing Nature with Computational Science for Optimal Signal Extraction," Stats, MDPI, vol. 4(1), pages 1-15, January.
  • Handle: RePEc:gam:jstats:v:4:y:2021:i:1:p:6-85:d:482984
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/4/1/6/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/4/1/6/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kolidakis, Stylianos & Botzoris, George & Profillidis, Vassilios & Lemonakis, Panagiotis, 2019. "Road traffic forecasting — A hybrid approach combining Artificial Neural Network with Singular Spectrum Analysis," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 159-171.
    2. Mansi Ghodsi & Hossein Hassani & Donya Rahmani & Emmanuel Sirimal Silva, 2018. "Vector and recurrent singular spectrum analysis: which is better at forecasting?," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(10), pages 1872-1899, July.
    3. Chiroma, Haruna & Abdulkareem, Sameem & Herawan, Tutut, 2015. "Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction," Applied Energy, Elsevier, vol. 142(C), pages 266-273.
    4. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    5. Hassani, Hossein & Rua, António & Silva, Emmanuel Sirimal & Thomakos, Dimitrios, 2019. "Monthly forecasting of GDP with mixed-frequency multivariate singular spectrum analysis," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1263-1272.
    6. Liu, Da & Niu, Dongxiao & Wang, Hui & Fan, Leilei, 2014. "Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm," Renewable Energy, Elsevier, vol. 62(C), pages 592-597.
    7. Sulandari, Winita & Subanar, & Lee, Muhammad Hisyam & Rodrigues, Paulo Canas, 2020. "Indonesian electricity load forecasting using singular spectrum analysis, fuzzy systems and neural networks," Energy, Elsevier, vol. 190(C).
    8. Mohd Nadhir Ab Wahab & Samia Nefti-Meziani & Adham Atyabi, 2015. "A Comprehensive Review of Swarm Optimization Algorithms," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-36, May.
    9. Hassani, Hossein & Heravi, Saeed & Zhigljavsky, Anatoly, 2009. "Forecasting European industrial production with singular spectrum analysis," International Journal of Forecasting, Elsevier, vol. 25(1), pages 103-118.
    10. Hossein Hassani & Emmanuel Sirimal Silva, 2015. "A Kolmogorov-Smirnov Based Test for Comparing the Predictive Accuracy of Two Sets of Forecasts," Econometrics, MDPI, vol. 3(3), pages 1-20, August.
    11. Wang, Cong & Zhang, Hongli & Ma, Ping, 2020. "Wind power forecasting based on singular spectrum analysis and a new hybrid Laguerre neural network," Applied Energy, Elsevier, vol. 259(C).
    12. Hassani, Hossein, 2007. "Singular Spectrum Analysis: Methodology and Comparison," MPRA Paper 4991, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Reza Yeganegi & Hossein Hassani & Rangan Gupta, 2023. "The ENSO cycle and forecastability of global inflation and output growth: Evidence from standard and mixed‐frequency multivariate singular spectrum analyses," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1690-1707, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Reza Yeganegi & Hossein Hassani & Rangan Gupta, 2023. "The ENSO cycle and forecastability of global inflation and output growth: Evidence from standard and mixed‐frequency multivariate singular spectrum analyses," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1690-1707, November.
    2. Mahdi Kalantari & Hossein Hassani, 2019. "Automatic Grouping in Singular Spectrum Analysis," Forecasting, MDPI, vol. 1(1), pages 1-16, October.
    3. Hassani, Hossein & Silva, Emmanuel Sirimal & Antonakakis, Nikolaos & Filis, George & Gupta, Rangan, 2017. "Forecasting accuracy evaluation of tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 112-127.
    4. Paulo Canas Rodrigues & Olushina Olawale Awe & Jonatha Sousa Pimentel & Rahim Mahmoudvand, 2020. "Modelling the Behaviour of Currency Exchange Rates with Singular Spectrum Analysis and Artificial Neural Networks," Stats, MDPI, vol. 3(2), pages 1-21, June.
    5. Donya Rahmani & Saeed Heravi & Hossein Hassani & Mansi Ghodsi, 2016. "Forecasting time series with structural breaks with Singular Spectrum Analysis, using a general form of recurrent formula," Papers 1605.02188, arXiv.org.
    6. M. Atikur Rahman Khan & D.S. Poskitt, 2014. "On The Theory and Practice of Singular Spectrum Analysis Forecasting," Monash Econometrics and Business Statistics Working Papers 3/14, Monash University, Department of Econometrics and Business Statistics.
    7. repec:rdg:wpaper:em-dp2013-04 is not listed on IDEAS
    8. Hossein Hassani & Emmanuel Sirimal Silva, 2015. "A Kolmogorov-Smirnov Based Test for Comparing the Predictive Accuracy of Two Sets of Forecasts," Econometrics, MDPI, vol. 3(3), pages 1-20, August.
    9. Huang, Xu & Hassani, Hossein & Ghodsi, Mansi & Mukherjee, Zinnia & Gupta, Rangan, 2017. "Do trend extraction approaches affect causality detection in climate change studies?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 604-624.
    10. Hassani, Hossein & Huang, Xu & Gupta, Rangan & Ghodsi, Mansi, 2016. "Does sunspot numbers cause global temperatures? A reconsideration using non-parametric causality tests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 54-65.
    11. Carlos Alberto Orge Pinheiro & Valter de Senna, 2016. "Price Forecasting Through Multivariate Spectral Analysis: Evidence for Commodities of BMeFbovespa," Brazilian Business Review, Fucape Business School, vol. 13(5), pages 129-157, September.
    12. Ping Jiang & Zeng Wang & Kequan Zhang & Wendong Yang, 2017. "An Innovative Hybrid Model Based on Data Pre-Processing and Modified Optimization Algorithm and Its Application in Wind Speed Forecasting," Energies, MDPI, vol. 10(7), pages 1-29, July.
    13. Hassani, Hossein & Webster, Allan & Silva, Emmanuel Sirimal & Heravi, Saeed, 2015. "Forecasting U.S. Tourist arrivals using optimal Singular Spectrum Analysis," Tourism Management, Elsevier, vol. 46(C), pages 322-335.
    14. Hassani, Hossein & Silva, Emmanuel Sirimal & Gupta, Rangan & Das, Sonali, 2018. "Predicting global temperature anomaly: A definitive investigation using an ensemble of twelve competing forecasting models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 121-139.
    15. Andrea Saayman & Jacques de Klerk, 2019. "Forecasting tourist arrivals using multivariate singular spectrum analysis," Tourism Economics, , vol. 25(3), pages 330-354, May.
    16. Galdi, Giulio & Casarin, Roberto & Ferrari, Davide & Fezzi, Carlo & Ravazzolo, Francesco, 2023. "Nowcasting industrial production using linear and non-linear models of electricity demand," Energy Economics, Elsevier, vol. 126(C).
    17. Hossein Hassani & Zara Ghodsi & Rangan Gupta & Mawuli Segnon, 2017. "Forecasting Home Sales in the Four Census Regions and the Aggregate US Economy Using Singular Spectrum Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 49(1), pages 83-97, January.
    18. Krzysztof Drachal & Michał Pawłowski, 2021. "A Review of the Applications of Genetic Algorithms to Forecasting Prices of Commodities," Economies, MDPI, vol. 9(1), pages 1-22, January.
    19. Menezes, Rui & Dionísio, Andreia & Hassani, Hossein, 2012. "On the globalization of stock markets: An application of Vector Error Correction Model, Mutual Information and Singular Spectrum Analysis to the G7 countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 369-384.
    20. de Carvalho, Miguel & Rua, António, 2017. "Real-time nowcasting the US output gap: Singular spectrum analysis at work," International Journal of Forecasting, Elsevier, vol. 33(1), pages 185-198.
    21. Silva, Emmanuel Sirimal & Hassani, Hossein, 2022. "‘Modelling’ UK tourism demand using fashion retail sales," Annals of Tourism Research, Elsevier, vol. 95(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:4:y:2021:i:1:p:6-85:d:482984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.