IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v45y2018i10p1872-1899.html
   My bibliography  Save this article

Vector and recurrent singular spectrum analysis: which is better at forecasting?

Author

Listed:
  • Mansi Ghodsi
  • Hossein Hassani
  • Donya Rahmani
  • Emmanuel Sirimal Silva

Abstract

Singular spectrum analysis (SSA) is an increasingly popular and widely adopted filtering and forecasting technique which is currently exploited in a variety of fields. Given its increasing application and superior performance in comparison to other methods, it is pertinent to study and distinguish between the two forecasting variations of SSA. These are referred to as Vector SSA (SSA-V) and Recurrent SSA (SSA-R). The general notion is that SSA-V is more robust and provides better forecasts than SSA-R. This is especially true when faced with time series which are non-stationary and asymmetric, or affected by unit root problems, outliers or structural breaks. However, currently there exists no empirical evidence for proving the above notions or suggesting that SSA-V is better than SSA-R. In this paper, we evaluate out-of-sample forecasting capabilities of the optimised SSA-V and SSA-R forecasting algorithms via a simulation study and an application to 100 real data sets with varying structures, to provide a statistically reliable answer to the question of which SSA algorithm is best for forecasting at both short and long run horizons based on several important criteria.

Suggested Citation

  • Mansi Ghodsi & Hossein Hassani & Donya Rahmani & Emmanuel Sirimal Silva, 2018. "Vector and recurrent singular spectrum analysis: which is better at forecasting?," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(10), pages 1872-1899, July.
  • Handle: RePEc:taf:japsta:v:45:y:2018:i:10:p:1872-1899
    DOI: 10.1080/02664763.2017.1401050
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2017.1401050
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2017.1401050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hatice Oncel Cekim & Coşkun Okan Güney & Özdemir Şentürk & Gamze Özel & Kürşad Özkan, 2021. "A novel approach for predicting burned forest area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2187-2201, January.
    2. Mohammad Reza Yeganegi & Hossein Hassani & Rangan Gupta, 2023. "The ENSO cycle and forecastability of global inflation and output growth: Evidence from standard and mixed‐frequency multivariate singular spectrum analyses," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1690-1707, November.
    3. Hatice Öncel Çekim & Ahmet Koyuncu, 2022. "The Impact of Google Trends on the Tourist Arrivals: A Case of Antalya Tourism," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 10(1), pages 1-14, June.
    4. Hossein Hassani & Mohammad Reza Yeganegi & Emmanuel Sirimal Silva, 2018. "A New Signal Processing Approach for Discrimination of EEG Recordings," Stats, MDPI, vol. 1(1), pages 1-14, November.
    5. Hossein Hassani & Mohammad Reza Yeganegi & Xu Huang, 2021. "Fusing Nature with Computational Science for Optimal Signal Extraction," Stats, MDPI, vol. 4(1), pages 1-15, January.
    6. Zhang, Yishuo & Li, Gang & Muskat, Birgit & Vu, Huy Quan & Law, Rob, 2021. "Predictivity of tourism demand data," Annals of Tourism Research, Elsevier, vol. 89(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:45:y:2018:i:10:p:1872-1899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.