IDEAS home Printed from https://ideas.repec.org/a/gam/jsoctx/v3y2013i1p147-157d24324.html
   My bibliography  Save this article

Seeing Green: The Re -discovery of Plants and Nature’s Wisdom

Author

Listed:
  • Monica Gagliano

    (Centre for Evolutionary Biology, The University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia)

Abstract

In this article, I endeavor to recount the odd history of how we have come to perceive plants like we do, and illustrate how plants themselves perceive and sense the world and, most importantly, what they can tell us about Nature. Through examples of the ingenious ways plants have evolved to thrive, I engage the idea that our modern society is afflicted by a severe disorder known as plant blindness , a pervasive condition inherited from our forefather Aristotle and accountable for the current state of vegetal disregard and hence environmental dilapidation. I propose that the solution to this state of affairs rests in a radical change of perspective, one that brings the prevailing, yet defective, Aristotelian paradigm together with its expectations on how Nature should behave to an end. Enacted, such change releases us into a new experience of reality, where the coherent nature of Nature is revealed.

Suggested Citation

  • Monica Gagliano, 2013. "Seeing Green: The Re -discovery of Plants and Nature’s Wisdom," Societies, MDPI, vol. 3(1), pages 1-11, March.
  • Handle: RePEc:gam:jsoctx:v:3:y:2013:i:1:p:147-157:d:24324
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2075-4698/3/1/147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2075-4698/3/1/147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandru M. F. Tomescu, 2009. "Evolutionary gems of the plant world shine just as brightly," Nature, Nature, vol. 457(7232), pages 956-956, February.
    2. Harry Smith, 2000. "Phytochromes and light signal perception by plants—an emerging synthesis," Nature, Nature, vol. 407(6804), pages 585-591, October.
    3. Elisabetta Collini & Cathy Y. Wong & Krystyna E. Wilk & Paul M. G. Curmi & Paul Brumer & Gregory D. Scholes, 2010. "Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature," Nature, Nature, vol. 463(7281), pages 644-647, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tina Gianquitto & Lauren LaFauci, 2022. "A case study in citizen environmental humanities: creating a participatory plant story website," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 12(2), pages 327-340, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vishal Kumar Jaiswal & Daniel Aranda Ruiz & Vasilis Petropoulos & Piotr Kabaciński & Francesco Montorsi & Lorenzo Uboldi & Simone Ugolini & Shaul Mukamel & Giulio Cerullo & Marco Garavelli & Fabrizio , 2024. "Sub-100-fs energy transfer in coenzyme NADH is a coherent process assisted by a charge-transfer state," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Reda M. El-Shishtawy & Robert Haddon & Saleh Al-Heniti & Bahaaudin Raffah & Sayed Abdel-Khalek & Kamal Berrada & Yas Al-Hadeethi, 2016. "Realistic Quantum Control of Energy Transfer in Photosynthetic Processes," Energies, MDPI, vol. 9(12), pages 1-11, December.
    3. Di Molfetta, Giuseppe & Brachet, Marc & Debbasch, Fabrice, 2014. "Quantum walks in artificial electric and gravitational fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 157-168.
    4. Gabor Vattay & Stuart Kauffman & Samuli Niiranen, 2014. "Quantum Biology on the Edge of Quantum Chaos," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-6, March.
    5. Man Zhang & Yunping Zeng & Rong Peng & Jie Dong & Yelin Lan & Sujuan Duan & Zhenyi Chang & Jian Ren & Guanzheng Luo & Bing Liu & Kamil Růžička & Kewei Zhao & Hong-Bin Wang & Hong-Lei Jin, 2022. "N6-methyladenosine RNA modification regulates photosynthesis during photodamage in plants," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Giacomo Salvadori & Veronica Macaluso & Giulia Pellicci & Lorenzo Cupellini & Giovanni Granucci & Benedetta Mennucci, 2022. "Protein control of photochemistry and transient intermediates in phytochromes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Yuan, Yu & Ji, Yaning & Wang, Wei & Shi, Dawei & Hai, Long & Ma, Qianlei & Yang, Qichang & Xie, Yuming & Li, Bin & Wu, Gang & Ma, Lingling, 2023. "Balancing energy harvesting and crop production in a nanofluid spectral splitting covering for an active solar greenhouse," Energy, Elsevier, vol. 278(C).
    8. Arif Ullah & Pavlo O. Dral, 2022. "Predicting the future of excitation energy transfer in light-harvesting complex with artificial intelligence-based quantum dynamics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Jon G. C. Kragskow & Jonathan Marbey & Christian D. Buch & Joscha Nehrkorn & Mykhaylo Ozerov & Stergios Piligkos & Stephen Hill & Nicholas F. Chilton, 2022. "Analysis of vibronic coupling in a 4f molecular magnet with FIRMS," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Louis J. Irving, 2015. "Carbon Assimilation, Biomass Partitioning and Productivity in Grasses," Agriculture, MDPI, vol. 5(4), pages 1-19, November.
    11. Daniel Manzano, 2013. "Quantum Transport in Networks and Photosynthetic Complexes at the Steady State," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-8, February.
    12. Longo, Giuseppe & Montévil, Maël, 2013. "Extended criticality, phase spaces and enablement in biology," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 64-79.
    13. Tobias Eul & Eva Prinz & Michael Hartelt & Benjamin Frisch & Martin Aeschlimann & Benjamin Stadtmüller, 2022. "Coherent response of the electronic system driven by non-interfering laser pulses," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Marko Vuković & Slaven Jurić & Luna Maslov Bandić & Branka Levaj & Da-Qi Fu & Tomislav Jemrić, 2022. "Sustainable Food Production: Innovative Netting Concepts and Their Mode of Action on Fruit Crops," Sustainability, MDPI, vol. 14(15), pages 1-31, July.
    15. Arnault, Pablo & Debbasch, Fabrice, 2016. "Landau levels for discrete-time quantum walks in artificial magnetic fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 179-191.
    16. François Gastal & Gilles Lemaire, 2015. "Defoliation, Shoot Plasticity, Sward Structure and Herbage Utilization in Pasture: Review of the Underlying Ecophysiological Processes," Agriculture, MDPI, vol. 5(4), pages 1-26, November.
    17. Ma, Qianlei & Zhang, Yi & Wu, Gang & Yang, Qichang & Wang, Wei & Chen, Xinge & Ji, Yaning, 2023. "Study on the effect of anti-reflection film on the spectral performance of the spectral splitting covering applied to greenhouse," Energy, Elsevier, vol. 272(C).
    18. Ringsmuth, Andrew K. & Landsberg, Michael J. & Hankamer, Ben, 2016. "Can photosynthesis enable a global transition from fossil fuels to solar fuels, to mitigate climate change and fuel-supply limitations?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 134-163.
    19. J.-B. Trebbia & Q. Deplano & P. Tamarat & B. Lounis, 2022. "Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Shirmovsky, S.Eh. & Shulga, D.V., 2023. "Quantum relaxation processes in microtubule tryptophan system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsoctx:v:3:y:2013:i:1:p:147-157:d:24324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.