IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp1515.html
   My bibliography  Save this paper

Locally Phi-Integrable Sigma-Martingale Densities for General Semimartingales

Author

Listed:
  • Tahir CHOULLI

    (University of Alberta)

  • Martin SCHWEIZER

    (ETH Zurich and Swiss Finance Institute)

Abstract

A P-sigma-martingale density for a given stochastic process S is a local P-martingale Z>0 starting at 1 such that the product ZS is a P-sigma-martingale. Existence of a P-sigma-martingale density is equivalent to a classic absence-of-arbitrage property of S, and it is invariant if we replace the reference measure P with a locally equivalent measure Q. Now suppose that there exists a P-sigma-martingale density for S. Can we find another P-sigma-martingale density for S having some extra local integrability I_loc(P) under P? We show that the answer is always positive for one part of S that we identify, and we show that the complete answer depends in a precise quantitative way on the local integrability of the drift-to-jump ratio of the remaining "jumpy" part of S. Our proofs provide in addition new ideas and results in infinite-dimensional spaces.

Suggested Citation

  • Tahir CHOULLI & Martin SCHWEIZER, 2015. "Locally Phi-Integrable Sigma-Martingale Densities for General Semimartingales," Swiss Finance Institute Research Paper Series 15-15, Swiss Finance Institute.
  • Handle: RePEc:chf:rpseri:rp1515
    as

    Download full text from publisher

    File URL: http://ssrn.com/abstract=2606674
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hardy Hulley & Martin Schweizer, 2010. "M6 - On Minimal Market Models and Minimal Martingale Measures," Research Paper Series 280, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Constantinos Kardaras, 2012. "Market viability via absence of arbitrage of the first kind," Finance and Stochastics, Springer, vol. 16(4), pages 651-667, October.
    3. Tahir Choulli & Christophe Stricker, 2006. "More On Minimal Entropy–Hellinger Martingale Measure," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 1-19, January.
    4. Tahir Choulli & Christophe Stricker & Jia Li, 2007. "Minimal Hellinger martingale measures of order q," Finance and Stochastics, Springer, vol. 11(3), pages 399-427, July.
    5. Koichiro Takaoka & Martin Schweizer, 2014. "A note on the condition of no unbounded profit with bounded risk," Finance and Stochastics, Springer, vol. 18(2), pages 393-405, April.
    6. Tahir CHOULLI & Martin SCHWEIZER, 2015. "A Result on Integral Functionals with Infinitely Many Constraints," Swiss Finance Institute Research Paper Series 15-38, Swiss Finance Institute.
    7. S. D. Jacka, 1992. "A Martingale Representation Result and an Application to Incomplete Financial Markets," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 239-250, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tahir Choulli & Sina Yansori, 2018. "Explicit description of all deflators for market models under random horizon with applications to NFLVR," Papers 1803.10128, arXiv.org, revised Feb 2021.
    2. Tahir Choulli & Sina Yansori, 2018. "Log-optimal portfolio and num\'eraire portfolio for market models stopped at a random time," Papers 1810.12762, arXiv.org, revised Aug 2020.
    3. Eckhard Platen & Stefan Tappe, 2020. "The Fundamental Theorem of Asset Pricing for Self-Financing Portfolios," Research Paper Series 411, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Tahir Choulli & Sina Yansori, 2018. "Log-optimal portfolio without NFLVR: existence, complete characterization, and duality," Papers 1807.06449, arXiv.org.
    5. Eckhard Platen & Stefan Tappe, 2020. "No arbitrage and multiplicative special semimartingales," Papers 2005.05575, arXiv.org, revised Sep 2022.
    6. Claudio Fontana & Monique Jeanblanc & Shiqi Song, 2014. "On arbitrages arising with honest times," Finance and Stochastics, Springer, vol. 18(3), pages 515-543, July.
    7. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2015. "Non-Arbitrage Under Additional Information for Thin Semimartingale Models," Papers 1505.00997, arXiv.org.
    8. David Criens & Mikhail Urusov, 2023. "Criteria for the absence of arbitrage in general diffusion markets," Papers 2306.11470, arXiv.org, revised Sep 2024.
    9. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2017. "No-arbitrage up to random horizon for quasi-left-continuous models," Finance and Stochastics, Springer, vol. 21(4), pages 1103-1139, October.
    10. Christa Cuchiero, 2017. "Polynomial processes in stochastic portfolio theory," Papers 1705.03647, arXiv.org.
    11. Czichowsky, Christoph & Schachermayer, Walter & Yang, Junjian, 2017. "Shadow prices for continuous processes," LSE Research Online Documents on Economics 63370, London School of Economics and Political Science, LSE Library.
    12. Peter Imkeller & Nicolas Perkowski, 2015. "The existence of dominating local martingale measures," Finance and Stochastics, Springer, vol. 19(4), pages 685-717, October.
    13. Choulli, Tahir & Vandaele, Nele & Vanmaele, Michèle, 2010. "The Föllmer-Schweizer decomposition: Comparison and description," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 853-872, June.
    14. Martin Herdegen & Martin Schweizer, 2018. "Semi‐efficient valuations and put‐call parity," Mathematical Finance, Wiley Blackwell, vol. 28(4), pages 1061-1106, October.
    15. Claudio Fontana, 2015. "Weak And Strong No-Arbitrage Conditions For Continuous Financial Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 1-34.
    16. Huy N. Chau & Andrea Cosso & Claudio Fontana & Oleksii Mostovyi, 2015. "Optimal investment with intermediate consumption under no unbounded profit with bounded risk," Papers 1509.01672, arXiv.org, revised Jun 2017.
    17. Michael Monoyios, 2020. "Infinite horizon utility maximisation from inter-temporal wealth," Papers 2009.00972, arXiv.org, revised Oct 2020.
    18. Tahir Choulli & Sina Yansori, 2022. "Log-optimal and numéraire portfolios for market models stopped at a random time," Finance and Stochastics, Springer, vol. 26(3), pages 535-585, July.
    19. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2018. "No-arbitrage under a class of honest times," Finance and Stochastics, Springer, vol. 22(1), pages 127-159, January.
    20. Erhan Bayraktar & Donghan Kim & Abhishek Tilva, 2024. "Arbitrage theory in a market of stochastic dimension," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 847-895, July.

    More about this item

    Keywords

    Sigma-martingale; equivalent martingale measures; Jacod decomposition; mathematical finance;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp1515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.