IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v40y2010i02p871-887_00.html
   My bibliography  Save this article

Prediction of RBNS and IBNR Claims using Claim Amounts and Claim Counts

Author

Listed:
  • Verrall, Richard
  • Nielsen, Jens Perch
  • Jessen, Anders Hedegaard

Abstract

A model is proposed using the run-off triangle of paid claims and also the numbers of reported claims (in a similar triangular array). These data are usually available, and allow the model proposed to be implemented in a large variety of situations. On the basis of these data, the stochastic model is built from detailed assumptions for individual claims, but then approximated using a compound Poisson framework. The model explicitly takes into account the delay from when a claim is incurred and to when it is reported (the IBNR delay) and the delay from when a claim is reported and to when it is fully paid (the RBNS delay). These two separate sources of delay are estimated separately, unlike most other reserving methods. The results are compared with those of the chain ladder technique.

Suggested Citation

  • Verrall, Richard & Nielsen, Jens Perch & Jessen, Anders Hedegaard, 2010. "Prediction of RBNS and IBNR Claims using Claim Amounts and Claim Counts," ASTIN Bulletin, Cambridge University Press, vol. 40(2), pages 871-887, November.
  • Handle: RePEc:cup:astinb:v:40:y:2010:i:02:p:871-887_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100000702/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimo De Felice & Franco Moriconi, 2019. "Claim Watching and Individual Claims Reserving Using Classification and Regression Trees," Risks, MDPI, vol. 7(4), pages 1-36, October.
    2. Jonas Harnau, 2018. "Log-Normal or Over-Dispersed Poisson?," Risks, MDPI, vol. 6(3), pages 1-37, July.
    3. Wahl, Felix & Lindholm, Mathias & Verrall, Richard, 2019. "The collective reserving model," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 34-50.
    4. Pigeon, Mathieu & Antonio, Katrien & Denuit, Michel, 2014. "Individual loss reserving using paid–incurred data," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 121-131.
    5. Mammen, Enno & Martínez Miranda, María Dolores & Nielsen, Jens Perch, 2015. "In-sample forecasting applied to reserving and mesothelioma mortality," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 76-86.
    6. Lindholm, Mathias & Verrall, Richard, 2020. "Regression based reserving models and partial information," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 109-124.
    7. Jonas Harnau, 2018. "Misspecification Tests for Log-Normal and Over-Dispersed Poisson Chain-Ladder Models," Risks, MDPI, vol. 6(2), pages 1-25, March.
    8. Badescu, Andrei L. & Lin, X. Sheldon & Tang, Dameng, 2016. "A marked Cox model for the number of IBNR claims: Theory," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 29-37.
    9. Huang, Jinlong & Qiu, Chunjuan & Wu, Xianyi & Zhou, Xian, 2015. "An individual loss reserving model with independent reporting and settlement," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 232-245.
    10. Wahl, Felix, 2019. "Explicit moments for a class of micro-models in non-life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 140-156.
    11. Yanez, Juan Sebastian & Pigeon, Mathieu, 2021. "Micro-level parametric duration-frequency-severity modeling for outstanding claim payments," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 106-119.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:40:y:2010:i:02:p:871-887_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.