IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v6y2018i1p18-d134969.html
   My bibliography  Save this article

Consistent Valuation Across Curves Using Pricing Kernels

Author

Listed:
  • Andrea Macrina

    (Department of Mathematics, University College London, London WC1E 6BT, UK
    Department of Actuarial Science, University of Cape Town, Rondebosch 7701, South Africa)

  • Obeid Mahomed

    (African Institute of Financial Markets and Risk Management, University of Cape Town, Rondebosch 7701, South Africa)

Abstract

The general problem of asset pricing when the discount rate differs from the rate at which an asset’s cash flows accrue is considered. A pricing kernel framework is used to model an economy that is segmented into distinct markets, each identified by a yield curve having its own market, credit and liquidity risk characteristics. The proposed framework precludes arbitrage within each market, while the definition of a curve-conversion factor process links all markets in a consistent arbitrage-free manner. A pricing formula is then derived, referred to as the across-curve pricing formula, which enables consistent valuation and hedging of financial instruments across curves (and markets). As a natural application, a consistent multi-curve framework is formulated for emerging and developed inter-bank swap markets, which highlights an important dual feature of the curve-conversion factor process. Given this multi-curve framework, existing multi-curve approaches based on HJM and rational pricing kernel models are recovered, reviewed and generalised and single-curve models extended. In another application, inflation-linked, currency-based and fixed-income hybrid securities are shown to be consistently valued using the across-curve valuation method.

Suggested Citation

  • Andrea Macrina & Obeid Mahomed, 2018. "Consistent Valuation Across Curves Using Pricing Kernels," Risks, MDPI, vol. 6(1), pages 1-39, March.
  • Handle: RePEc:gam:jrisks:v:6:y:2018:i:1:p:18-:d:134969
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/6/1/18/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/6/1/18/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jirô Akahori & Andrea Macrina, 2022. "Heat Kernel Interest Rate Models With Time-Inhomogeneous Markov Processes," World Scientific Book Chapters, in: Dorje Brody & Lane Hughston & Andrea Macrina (ed.), Financial Informatics An Information-Based Approach to Asset Pricing, chapter 9, pages 179-193, World Scientific Publishing Co. Pte. Ltd..
    2. N. Moreni & A. Pallavicini, 2014. "Parsimonious HJM modelling for multiple yield curve dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 199-210, February.
    3. Jin, Yan & Glasserman, Paul, 2001. "Equilibrium Positive Interest Rates: A Unified View," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 187-214.
    4. Masaaki Fujii & Yasufumi Shimada & Akihiko Takahashi, 2009. "A Market Model of Interest Rates with Dynamic Basis Spreads in the presence of Collateral and Multiple Currencies," CARF F-Series CARF-F-196, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Apr 2011.
    5. Alfeus, Mesias & Grasselli, Martino & Schlögl, Erik, 2020. "A consistent stochastic model of the term structure of interest rates for multiple tenors," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    6. Masaaki Kijima & Keiichi Tanaka & Tony Wong, 2009. "A multi-quality model of interest rates," Quantitative Finance, Taylor & Francis Journals, vol. 9(2), pages 133-145.
    7. Roberto Dieci & Xue-Zhong He & Cars Hommes (ed.), 2014. "Nonlinear Economic Dynamics and Financial Modelling," Springer Books, Springer, edition 127, number 978-3-319-07470-2, October.
    8. Constantinides, George M, 1992. "A Theory of the Nominal Term Structure of Interest Rates," The Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 531-552.
    9. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2016. "A general HJM framework for multiple yield curve modelling," Finance and Stochastics, Springer, vol. 20(2), pages 267-320, April.
    10. Robert Jarrow & Yildiray Yildirim, 2008. "Pricing Treasury Inflation Protected Securities and Related Derivatives using an HJM Model," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 16, pages 349-370, World Scientific Publishing Co. Pte. Ltd..
    11. Marco Bianchetti, 2009. "Two Curves, One Price: Pricing & Hedging Interest Rate Derivatives Decoupling Forwarding and Discounting Yield Curves," Papers 0905.2770, arXiv.org, revised Jul 2012.
    12. Andrea Macrina, 2014. "Heat Kernel Models For Asset Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(07), pages 1-34.
    13. Lane Hughston & Avraam Rafailidis, 2005. "A chaotic approach to interest rate modelling," Finance and Stochastics, Springer, vol. 9(1), pages 43-65, January.
    14. Filipović, Damir & Trolle, Anders B., 2013. "The term structure of interbank risk," Journal of Financial Economics, Elsevier, vol. 109(3), pages 707-733.
    15. Martino Grasselli & Giulio Miglietta, 2016. "A flexible spot multiple-curve model," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1465-1477, October.
    16. L. C. G. Rogers, 1997. "The Potential Approach to the Term Structure of Interest Rates and Foreign Exchange Rates," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 157-176, April.
    17. K. F. Pilz & E. Schlögl, 2013. "A hybrid commodity and interest rate market model," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 543-560, March.
    18. Stéphane Crépey & Andrea Macrina & Tuyet Mai Nguyen & David Skovmand, 2016. "Rational multi-curve models with counterparty-risk valuation adjustments," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 847-866, June.
    19. Damir Filipović & Martin Larsson & Anders B. Trolle, 2017. "Linear-Rational Term Structure Models," Journal of Finance, American Finance Association, vol. 72(2), pages 655-704, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markus Hess, 2019. "An Arithmetic Pure-Jump Multi-Curve Interest Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-30, December.
    2. Alfeus, Mesias & Grasselli, Martino & Schlögl, Erik, 2020. "A consistent stochastic model of the term structure of interest rates for multiple tenors," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    3. Ernst Eberlein & Christoph Gerhart & Zorana Grbac, 2019. "Multiple curve Lévy forward price model allowing for negative interest rates," Post-Print hal-03898912, HAL.
    4. Andrea Macrina & David Skovmand, 2020. "Rational Savings Account Models for Backward-Looking Interest Rate Benchmarks," Risks, MDPI, vol. 8(1), pages 1-18, March.
    5. repec:uts:finphd:41 is not listed on IDEAS
    6. Claudio Fontana & Giacomo Lanaro & Agatha Murgoci, 2024. "The geometry of multi-curve interest rate models," Papers 2401.11619, arXiv.org, revised Jun 2024.
    7. Marcin Dec, 2019. "From point through density valuation to individual risk assessment in the discounted cash flows method," GRAPE Working Papers 35, GRAPE Group for Research in Applied Economics.
    8. Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Finance and Stochastics, Springer, vol. 24(2), pages 465-511, April.
    9. Henrik Dam & Andrea Macrina & David Skovmand & David Sloth, 2018. "Rational Models for Inflation-Linked Derivatives," Papers 1801.08804, arXiv.org, revised Jul 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Macrina & Obeid Mahomed, 2018. "Consistent Valuation Across Curves Using Pricing Kernels," Papers 1801.04994, arXiv.org, revised Feb 2018.
    2. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2019. "Affine multiple yield curve models," Mathematical Finance, Wiley Blackwell, vol. 29(2), pages 568-611, April.
    3. The Anh Nguyen & Frank Thomas Seifried, 2015. "The Multi-Curve Potential Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(07), pages 1-32, November.
    4. Stephane Crepey & Andrea Macrina & Tuyet Mai Nguyen & David Skovmand, 2015. "Rational Multi-Curve Models with Counterparty-Risk Valuation Adjustments," Papers 1502.07397, arXiv.org.
    5. Henrik Dam & Andrea Macrina & David Skovmand & David Sloth, 2018. "Rational Models for Inflation-Linked Derivatives," Papers 1801.08804, arXiv.org, revised Jul 2020.
    6. Andrea Macrina & David Skovmand, 2020. "Rational Savings Account Models for Backward-Looking Interest Rate Benchmarks," Risks, MDPI, vol. 8(1), pages 1-18, March.
    7. Alessandro Gnoatto & Silvia Lavagnini, 2023. "Cross-Currency Heath-Jarrow-Morton Framework in the Multiple-Curve Setting," Papers 2312.13057, arXiv.org.
    8. Alfeus, Mesias & Grasselli, Martino & Schlögl, Erik, 2020. "A consistent stochastic model of the term structure of interest rates for multiple tenors," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    9. repec:uts:finphd:41 is not listed on IDEAS
    10. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2016. "A general HJM framework for multiple yield curve modelling," Finance and Stochastics, Springer, vol. 20(2), pages 267-320, April.
    11. Yangfan Zhong & Yanhui Mi, 2018. "Pricing in-arrears caps and ratchet caps under LIBOR market model with multiplicative basis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-31, September.
    12. Nikolaos Karouzakis & John Hatgioannides & Kostas Andriosopoulos, 2018. "Convexity adjustment for constant maturity swaps in a multi-curve framework," Annals of Operations Research, Springer, vol. 266(1), pages 159-181, July.
    13. Markus Hess, 2019. "An Arithmetic Pure-Jump Multi-Curve Interest Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-30, December.
    14. Laura Morino & Wolfgang J. Ruggaldier, 2014. "On multicurve models for the term structure," Papers 1401.5431, arXiv.org.
    15. Thomas Krabichler & Josef Teichmann, 2020. "The Jarrow & Turnbull setting revisited," Papers 2004.12392, arXiv.org.
    16. Mesias Alfeus, 2019. "Stochastic Modelling of New Phenomena in Financial Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2019, January-A.
    17. Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Finance and Stochastics, Springer, vol. 24(2), pages 465-511, April.
    18. Yangfan Zhong, 2018. "LIBOR market model with multiplicative basis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-38, June.
    19. Gerhart, Christoph & Lütkebohmert, Eva, 2020. "Empirical analysis and forecasting of multiple yield curves," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 59-78.
    20. Eric Jondeau & Benoit Mojon & Jean-Guillaume Sahuc, 2020. "Bank Funding Cost and Liquidity Supply Regimes," BIS Working Papers 854, Bank for International Settlements.
    21. Atkins, Philip J. & Cummins, Mark, 2023. "Improved scalability and risk factor proxying with a two-step principal component analysis for multi-curve modelling," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1331-1348.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:6:y:2018:i:1:p:18-:d:134969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.