IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v5y2017i4p59-d117902.html
   My bibliography  Save this article

A Review and Some Complements on Quantile Risk Measures and Their Domain

Author

Listed:
  • Sebastian Fuchs

    (Faculty of Economics and Management, Free University of Bozen-Bolzano, 39100 Bolzano, Italy)

  • Ruben Schlotter

    (Fakultät für Mathematik, Technische Universität Chemnitz, 09126 Chemnitz, Germany)

  • Klaus D. Schmidt

    (Fachrichtung Mathematik, Technische Universität Dresden, 01062 Dresden, Germany)

Abstract

In the present paper, we study quantile risk measures and their domain. Our starting point is that, for a probability measure Q on the open unit interval and a wide class L Q of random variables, we define the quantile risk measure ϱ Q as the map that integrates the quantile function of a random variable in L Q with respect to Q . The definition of L Q ensures that ϱ Q cannot attain the value + ∞ and cannot be extended beyond L Q without losing this property. The notion of a quantile risk measure is a natural generalization of that of a spectral risk measure and provides another view of the distortion risk measures generated by a distribution function on the unit interval. In this general setting, we prove several results on quantile or spectral risk measures and their domain with special consideration of the expected shortfall. We also present a particularly short proof of the subadditivity of expected shortfall.

Suggested Citation

  • Sebastian Fuchs & Ruben Schlotter & Klaus D. Schmidt, 2017. "A Review and Some Complements on Quantile Risk Measures and Their Domain," Risks, MDPI, vol. 5(4), pages 1-16, November.
  • Handle: RePEc:gam:jrisks:v:5:y:2017:i:4:p:59-:d:117902
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/5/4/59/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/5/4/59/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georg Ch Pflug & Werner Römisch, 2007. "Modeling, Measuring and Managing Risk," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6478, September.
    2. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    3. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    4. Pichler, Alois, 2013. "The natural Banach space for version independent risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 405-415.
    5. Embrechts Paul & Wang Ruodu, 2015. "Seven Proofs for the Subadditivity of Expected Shortfall," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-15, October.
    6. Wang, Shaun & Dhaene, Jan, 1998. "Comonotonicity, correlation order and premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 235-242, July.
    7. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Post-Print hal-00413729, HAL.
    8. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    9. Greselin, Francesca & Zitikis, Ricardas, 2015. "Measuring economic inequality and risk: a unifying approach based on personal gambles, societal preferences and references," MPRA Paper 65892, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barczy, Mátyás & K. Nedényi, Fanni & Sütő, László, 2023. "Probability equivalent level of Value at Risk and higher-order Expected Shortfalls," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 107-128.
    2. Fuchs Sebastian & Trutschnig Wolfgang, 2020. "On quantile based co-risk measures and their estimation," Dependence Modeling, De Gruyter, vol. 8(1), pages 396-416, January.
    3. Silvia Faroni & Olivier Le Courtois & Krzysztof Ostaszewski, 2022. "Equivalent Risk Indicators: VaR, TCE, and Beyond," Risks, MDPI, vol. 10(8), pages 1-19, July.
    4. Fuchs Sebastian & Trutschnig Wolfgang, 2020. "On quantile based co-risk measures and their estimation," Dependence Modeling, De Gruyter, vol. 8(1), pages 396-416, January.
    5. Zou, Zhenfeng & Hu, Taizhong, 2024. "Adjusted higher-order expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 1-12.
    6. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    7. Matyas Barczy & Fanni K. Ned'enyi & L'aszl'o SutH{o}, 2022. "Probability equivalent level of Value at Risk and higher-order Expected Shortfalls," Papers 2202.09770, arXiv.org, revised Nov 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Embrechts Paul & Wang Ruodu, 2015. "Seven Proofs for the Subadditivity of Expected Shortfall," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-15, October.
    2. Ruodu Wang & Yunran Wei, 2020. "Risk functionals with convex level sets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1337-1367, October.
    3. Righi, Marcelo Brutti & Müller, Fernanda Maria & Moresco, Marlon Ruoso, 2020. "On a robust risk measurement approach for capital determination errors minimization," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 199-211.
    4. Fuchs Sebastian & Trutschnig Wolfgang, 2020. "On quantile based co-risk measures and their estimation," Dependence Modeling, De Gruyter, vol. 8(1), pages 396-416, January.
    5. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    6. Fuchs Sebastian & Trutschnig Wolfgang, 2020. "On quantile based co-risk measures and their estimation," Dependence Modeling, De Gruyter, vol. 8(1), pages 396-416, January.
    7. Santos, Samuel S. & Moresco, Marlon R. & Righi, Marcelo B. & Horta, Eduardo, 2024. "A note on the induction of comonotonic additive risk measures from acceptance sets," Statistics & Probability Letters, Elsevier, vol. 208(C).
    8. Burzoni, Matteo & Munari, Cosimo & Wang, Ruodu, 2022. "Adjusted Expected Shortfall," Journal of Banking & Finance, Elsevier, vol. 134(C).
    9. Yunran Wei & Ricardas Zitikis, 2022. "Assessing the difference between integrated quantiles and integrated cumulative distribution functions," Papers 2210.16880, arXiv.org, revised Apr 2023.
    10. Labopin-Richard T. & Gamboa F. & Garivier A. & Iooss B., 2016. "Bregman superquantiles. Estimation methods and applications," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-33, March.
    11. Wei, Yunran & Zitikis, Ričardas, 2023. "Assessing the difference between integrated quantiles and integrated cumulative distribution functions," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 163-172.
    12. Fissler, Tobias & Pesenti, Silvana M., 2023. "Sensitivity measures based on scoring functions," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1408-1423.
    13. Paul Embrechts & Alexander Schied & Ruodu Wang, 2018. "Robustness in the Optimization of Risk Measures," Papers 1809.09268, arXiv.org, revised Feb 2021.
    14. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2020. "Risk quantification for commodity ETFs: Backtesting value-at-risk and expected shortfall," International Review of Financial Analysis, Elsevier, vol. 70(C).
    15. Alois Pichler, 2013. "Premiums And Reserves, Adjusted By Distortions," Papers 1304.0490, arXiv.org.
    16. Barrieu, Pauline & Scandolo, Giacomo, 2014. "Assessing financial model risk," LSE Research Online Documents on Economics 60084, London School of Economics and Political Science, LSE Library.
    17. Tobias Fissler & Silvana M. Pesenti, 2022. "Sensitivity Measures Based on Scoring Functions," Papers 2203.00460, arXiv.org, revised Jul 2022.
    18. Giovanni Paolo Crespi & Elisa Mastrogiacomo, 2020. "Qualitative robustness of set-valued value-at-risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 25-54, February.
    19. Martin Herdegen & Cosimo Munari, 2023. "An elementary proof of the dual representation of Expected Shortfall," Papers 2306.14506, arXiv.org.
    20. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:5:y:2017:i:4:p:59-:d:117902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.