IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v5y2017i3p38-d105140.html
   My bibliography  Save this article

Stress Testing German Industry Sectors: Results from a Vine Copula Based Quantile Regression

Author

Listed:
  • Matthias Fischer

    (Lehrstuhl für Statistik und Ökonometrie, Universität Erlangen-Nürnberg, Lange Gasse 20, 90403 Nürnberg, Germany)

  • Daniel Kraus

    (Zentrum Mathematik, Technische Universität München, Boltzmanstraße 3, 85748 Garching, Germany)

  • Marius Pfeuffer

    (Lehrstuhl für Statistik und Ökonometrie, Universität Erlangen-Nürnberg, Lange Gasse 20, 90403 Nürnberg, Germany)

  • Claudia Czado

    (Zentrum Mathematik, Technische Universität München, Boltzmanstraße 3, 85748 Garching, Germany)

Abstract

Measuring interdependence between probabilities of default (PDs) in different industry sectors of an economy plays a crucial role in financial stress testing. Thereby, regression approaches may be employed to model the impact of stressed industry sectors as covariates on other response sectors. We identify vine copula based quantile regression as an eligible tool for conducting such stress tests as this method has good robustness properties, takes into account potential nonlinearities of conditional quantile functions and ensures that no quantile crossing effects occur. We illustrate its performance by a data set of sector specific PDs for the German economy. Empirical results are provided for a rough and a fine-grained industry sector classification scheme. Amongst others, we confirm that a stressed automobile industry has a severe impact on the German economy as a whole at different quantile levels whereas, e.g., for a stressed financial sector the impact is rather moderate. Moreover, the vine copula based quantile regression approach is benchmarked against both classical linear quantile regression and expectile regression in order to illustrate its methodological effectiveness in the scenarios evaluated.

Suggested Citation

  • Matthias Fischer & Daniel Kraus & Marius Pfeuffer & Claudia Czado, 2017. "Stress Testing German Industry Sectors: Results from a Vine Copula Based Quantile Regression," Risks, MDPI, vol. 5(3), pages 1-13, July.
  • Handle: RePEc:gam:jrisks:v:5:y:2017:i:3:p:38-:d:105140
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/5/3/38/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/5/3/38/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hobæk Haff, Ingrid & Aas, Kjersti & Frigessi, Arnoldo, 2010. "On the simplified pair-copula construction -- Simply useful or too simplistic?," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1296-1310, May.
    2. Matthias Fischer & Christian Kock & Stephan Schluter & Florian Weigert, 2009. "An empirical analysis of multivariate copula models," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 839-854.
    3. Covas, Francisco B. & Rump, Ben & Zakrajšek, Egon, 2014. "Stress-testing US bank holding companies: A dynamic panel quantile regression approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 691-713.
    4. Frahm, Gabriel & Junker, Markus & Szimayer, Alexander, 2003. "Elliptical copulas: applicability and limitations," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 275-286, July.
    5. Howard D. Bondell & Brian J. Reich & Huixia Wang, 2010. "Noncrossing quantile regression curve estimation," Biometrika, Biometrika Trust, vol. 97(4), pages 825-838.
    6. Victor Chernozhukov, 2005. "Extremal quantile regression," Papers math/0505639, arXiv.org.
    7. Holger Dette & Stanislav Volgushev, 2008. "Non‐crossing non‐parametric estimates of quantile curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 609-627, July.
    8. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    9. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    10. Schechtman, Ricardo & Gaglianone, Wagner Piazza, 2012. "Macro stress testing of credit risk focused on the tails," Journal of Financial Stability, Elsevier, vol. 8(3), pages 174-192.
    11. Victor Chernozhukov & Iv'an Fern'andez-Val & Tetsuya Kaji, 2016. "Extremal Quantile Regression: An Overview," Papers 1612.06850, arXiv.org, revised Feb 2017.
    12. Bernard, Carole & Czado, Claudia, 2015. "Conditional quantiles and tail dependence," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 104-126.
    13. Roger Koenker & Zhijie Xiao, 2002. "Inference on the Quantile Regression Process," Econometrica, Econometric Society, vol. 70(4), pages 1583-1612, July.
    14. Stöber, Jakob & Joe, Harry & Czado, Claudia, 2013. "Simplified pair copula constructions—Limitations and extensions," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 101-118.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David E. Allen & Michael McAleer & Abhay K. Singh, 2017. "Risk Measurement and Risk Modelling Using Applications of Vine Copulas," Sustainability, MDPI, vol. 9(10), pages 1-34, September.
    2. Lubomira Gertler & Kristina Janovicova-Bognarova & Lukas Majer, 2020. "Explaining Corporate Credit Default Rates with Sector Level Detail," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 70(2), pages 96-120, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holger Fink & Yulia Klimova & Claudia Czado & Jakob Stober, 2016. "Regime switching vine copula models for global equity and volatility indices," Papers 1604.05598, arXiv.org.
    2. Kraus, Daniel & Czado, Claudia, 2017. "D-vine copula based quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 1-18.
    3. Min, Aleksey & Czado, Claudia, 2014. "SCOMDY models based on pair-copula constructions with application to exchange rates," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 523-535.
    4. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    5. Portier, François & Segers, Johan, 2018. "On the weak convergence of the empirical conditional copula under a simplifying assumption," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 160-181.
    6. Firpo, Sergio & Galvao, Antonio F. & Pinto, Cristine & Poirier, Alexandre & Sanroman, Graciela, 2022. "GMM quantile regression," Journal of Econometrics, Elsevier, vol. 230(2), pages 432-452.
    7. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    8. Derumigny Alexis & Fermanian Jean-David, 2017. "About tests of the “simplifying” assumption for conditional copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 154-197, August.
    9. Kajal Lahiri & Liu Yang, 2023. "Predicting binary outcomes based on the pair-copula construction," Empirical Economics, Springer, vol. 64(6), pages 3089-3119, June.
    10. Chao, Shih-Kang & Härdle, Wolfgang K. & Yuan, Ming, 2021. "Factorisable Multitask Quantile Regression," Econometric Theory, Cambridge University Press, vol. 37(4), pages 794-816, August.
    11. Brechmann, Eike C. & Hendrich, Katharina & Czado, Claudia, 2013. "Conditional copula simulation for systemic risk stress testing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 722-732.
    12. Dalla Valle, Luciana & De Giuli, Maria Elena & Tarantola, Claudia & Manelli, Claudio, 2016. "Default probability estimation via pair copula constructions," European Journal of Operational Research, Elsevier, vol. 249(1), pages 298-311.
    13. Cooke, R.M. & Kurowicka, D. & Wilson, K., 2015. "Sampling, conditionalizing, counting, merging, searching regular vines," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 4-18.
    14. Miguel Ángel Morales Mosquera & Wilmar Cabrera & Laura Capera & Dairo Estrada, 2012. "Un Mapa de Riesgo de Crédito para el Sistema Financiero Colombiano," Temas de Estabilidad Financiera 068, Banco de la Republica de Colombia.
    15. BenSaïda, Ahmed, 2018. "The contagion effect in European sovereign debt markets: A regime-switching vine copula approach," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 153-165.
    16. Çekin, Semih Emre & Pradhan, Ashis Kumar & Tiwari, Aviral Kumar & Gupta, Rangan, 2020. "Measuring co-dependencies of economic policy uncertainty in Latin American countries using vine copulas," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 207-217.
    17. Holger Fink & Yulia Klimova & Claudia Czado & Jakob Stöber, 2017. "Regime Switching Vine Copula Models for Global Equity and Volatility Indices," Econometrics, MDPI, vol. 5(1), pages 1-38, January.
    18. Barthel, Nicole & Geerdens, Candida & Killiches, Matthias & Janssen, Paul & Czado, Claudia, 2018. "Vine copula based likelihood estimation of dependence patterns in multivariate event time data," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 109-127.
    19. Bladt, Martin & McNeil, Alexander J., 2022. "Time series copula models using d-vines and v-transforms," Econometrics and Statistics, Elsevier, vol. 24(C), pages 27-48.
    20. Qu, Zhongjun & Yoon, Jungmo, 2015. "Nonparametric estimation and inference on conditional quantile processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 1-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:5:y:2017:i:3:p:38-:d:105140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.