IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v3y2015i4p624-646d60969.html
   My bibliography  Save this article

Modified Munich Chain-Ladder Method

Author

Listed:
  • Michael Merz

    (Faculty of Business Administration, University of Hamburg, 20146 Hamburg, Germany)

  • Mario V. Wüthrich

    (ETH Zurich, RiskLab, Department of Mathematics, 8092 Zurich, Switzerland
    Swiss Finance Institute SFI Professor.)

Abstract

The Munich chain-ladder method for claims reserving was introduced by Quarg and Mack on an axiomatic basis. We analyze these axioms, and we define a modified Munich chain-ladder method which is based on an explicit stochastic model. This stochastic model then allows us to consider claims prediction and prediction uncertainty for the Munich chain-ladder method in a consistent way.

Suggested Citation

  • Michael Merz & Mario V. Wüthrich, 2015. "Modified Munich Chain-Ladder Method," Risks, MDPI, vol. 3(4), pages 1-23, December.
  • Handle: RePEc:gam:jrisks:v:3:y:2015:i:4:p:624-646:d:60969
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/3/4/624/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/3/4/624/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mario V. Wuthrich & Michael Merz, 2015. "Stochastic Claims Reserving Manual: Advances in Dynamic Modeling," Swiss Finance Institute Research Paper Series 15-34, Swiss Finance Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.
    2. Afaf Antar Zohry & Mostafa Abdelghany Ahmed, 2021. "The Prediction Error of the Chain Ladder Method (With Application to Real Data)," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 12(12), pages 1-14, December.
    3. Stefano Cavastracci Strascia & Agostino Tripodi, 2018. "Overdispersed-Poisson Model in Claims Reserving: Closed Tool for One-Year Volatility in GLM Framework," Risks, MDPI, vol. 6(4), pages 1-24, December.
    4. Badescu, Andrei L. & Lin, X. Sheldon & Tang, Dameng, 2016. "A marked Cox model for the number of IBNR claims: Theory," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 29-37.
    5. Richard J. Verrall & Mario V. Wüthrich, 2016. "Understanding Reporting Delay in General Insurance," Risks, MDPI, vol. 4(3), pages 1-36, July.
    6. Peters, Gareth W. & Targino, Rodrigo S. & Wüthrich, Mario V., 2017. "Full Bayesian analysis of claims reserving uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 41-53.
    7. Crevecoeur, Jonas & Robben, Jens & Antonio, Katrien, 2022. "A hierarchical reserving model for reported non-life insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 104(C), pages 158-184.
    8. Mathias Lindholm & Ronald Richman & Andreas Tsanakas & Mario V. Wuthrich, 2022. "A Discussion of Discrimination and Fairness in Insurance Pricing," Papers 2209.00858, arXiv.org.
    9. Gao, Guangyuan & Meng, Shengwang & Shi, Yanlin, 2021. "Dispersion modelling of outstanding claims with double Poisson regression models," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 572-586.
    10. Alessandro Ricotta & Edoardo Luini, 2019. "Bayesian Estimation of Structure Variables in the Collective Risk Model for Reserve Risk," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 9(2), pages 1-2.
    11. England, P.D. & Verrall, R.J. & Wüthrich, M.V., 2019. "On the lifetime and one-year views of reserve risk, with application to IFRS 17 and Solvency II risk margins," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 74-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:3:y:2015:i:4:p:624-646:d:60969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.