Catastrophe Insurance Modeled by Shot-Noise Processes
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Herbertsson, Alexander & Jang, Jiwook & Schmidt, Thorsten, 2011. "Pricing basket default swaps in a tractable shot noise model," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1196-1207, August.
- repec:fth:geneec:99.01 is not listed on IDEAS
- Moreno, Manuel & Serrano, Pedro & Stute, Winfried, 2011.
"Statistical properties and economic implications of jump-diffusion processes with shot-noise effects,"
European Journal of Operational Research, Elsevier, vol. 214(3), pages 656-664, November.
- Moreno, M. & Serrano, P. & Stute, Winfried, 2008. "Statistical properties and economic implications of Jump-Diffusion Processes with Shot-Noise effects," DEE - Working Papers. Business Economics. WB wb084912, Universidad Carlos III de Madrid. Departamento de EconomÃa de la Empresa.
- Esche, Felix & Schweizer, Martin, 2005. "Minimal entropy preserves the Lévy property: how and why," Stochastic Processes and their Applications, Elsevier, vol. 115(2), pages 299-327, February.
- Dassios, Angelos & Jang, Jiwook, 2003. "Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity," LSE Research Online Documents on Economics 2849, London School of Economics and Political Science, LSE Library.
- Timo Altmann & Thorsten Schmidt & Winfried Stute, 2008. "A Shot Noise Model For Financial Assets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 87-106.
- Schmidt, Thorsten & Stute, Winfried, 2007. "Shot-noise processes and the minimal martingale measure," Statistics & Probability Letters, Elsevier, vol. 77(12), pages 1332-1338, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sarah Bensalem & Nicolás Hernández-Santibáñez & Nabil Kazi-Tani, 2023. "A continuous-time model of self-protection," Finance and Stochastics, Springer, vol. 27(2), pages 503-537, April.
- Masahiko Egami & Rusudan Kevkhishvili, 2016. "An Analysis of Simultaneous Company Defaults Using a Shot Noise Process," Discussion papers e-16-001, Graduate School of Economics , Kyoto University.
- Avanzi, Benjamin & Wong, Bernard & Yang, Xinda, 2016. "A micro-level claim count model with overdispersion and reporting delays," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 1-14.
- Sukono & Hafizan Juahir & Riza Andrian Ibrahim & Moch Panji Agung Saputra & Yuyun Hidayat & Igif Gimin Prihanto, 2022. "Application of Compound Poisson Process in Pricing Catastrophe Bonds: A Systematic Literature Review," Mathematics, MDPI, vol. 10(15), pages 1-19, July.
- Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 55-65.
- Claudia Ceci & Katia Colaneri & Alessandra Cretarola, 2021. "Optimal Reinsurance and Investment under Common Shock Dependence Between Financial and Actuarial Markets," Papers 2105.07524, arXiv.org.
- Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," LSE Research Online Documents on Economics 64051, London School of Economics and Political Science, LSE Library.
- Zied Chaieb & Djibril Gueye, 2022. "Pricing zero-coupon CAT bonds using the enlargement of ltration theory: a general framework," Papers 2208.02609, arXiv.org.
- Yiqing Chen, 2019. "A Renewal Shot Noise Process with Subexponential Shot Marks," Risks, MDPI, vol. 7(2), pages 1-8, June.
- Durga, N. & Muthukumar, P., 2019. "Existence and exponential behavior of multi-valued nonlinear fractional stochastic integro-differential equations with Poisson jumps of Clarke’s subdifferential type," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 347-359.
- Jang, Jiwook & Dassios, Angelos & Zhao, Hongbiao, 2018. "Moments of renewal shot-noise processes and their applications," LSE Research Online Documents on Economics 87428, London School of Economics and Political Science, LSE Library.
- Zied Chaieb & Djibril Gueye, 2022. "Pricing zero-coupon CAT bonds using the enlargement of ltration theory: a general framework ," Post-Print hal-03745077, HAL.
- Krzysztof Burnecki & Mario Nicoló Giuricich, 2017. "Stable Weak Approximation at Work in Index-Linked Catastrophe Bond Pricing," Risks, MDPI, vol. 5(4), pages 1-19, December.
- Liu, Wenyue & Cadenillas, Abel, 2023. "Optimal insurance contracts for a shot-noise Cox claim process and persistent insured's actions," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 69-93.
- Riza Andrian Ibrahim & Sukono & Herlina Napitupulu, 2022. "Multiple-Trigger Catastrophe Bond Pricing Model and Its Simulation Using Numerical Methods," Mathematics, MDPI, vol. 10(9), pages 1-17, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Angelos Dassios & Xin Dong, 2014. "Stationarity of Bivariate Dynamic Contagion Processes," Papers 1405.5842, arXiv.org.
- Thorsten Schmidt, 2016. "Shot-Noise Processes in Finance," Papers 1612.06616, arXiv.org.
- Kai Kopperschmidt & Winfried Stute, 2009. "Purchase timing models in marketing: a review," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 93(2), pages 123-149, June.
- Oleksandra Putyatina & Jörn Sass, 2018. "Approximation for portfolio optimization in a financial market with shot-noise jumps," Computational Management Science, Springer, vol. 15(2), pages 161-186, June.
- Liang, Xiaoqing & Lu, Yi, 2017. "Indifference pricing of a life insurance portfolio with risky asset driven by a shot-noise process," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 119-132.
- Shuang Li & Yanli Zhou & Yonghong Wu & Xiangyu Ge, 2017. "Equilibrium approach of asset and option pricing under Lévy process and stochastic volatility," Australian Journal of Management, Australian School of Business, vol. 42(2), pages 276-295, May.
- Yan, Jun, 2017. "Deviations and asymptotic behavior of convex and coherent entropic risk measures for compound Poisson process influenced by jump times," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 71-79.
- Fu, Jun & Yang, Hailiang, 2012. "Equilibruim approach of asset pricing under Lévy process," European Journal of Operational Research, Elsevier, vol. 223(3), pages 701-708.
- Kim, Jeong-Hoon & Ma, Yong-Ki & Park, Chan Yeol, 2016. "Joint survival probability via truncated invariant copula," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 68-76.
- Barsotti, Flavia & Milhaud, Xavier & Salhi, Yahia, 2016.
"Lapse risk in life insurance: Correlation and contagion effects among policyholders’ behaviors,"
Insurance: Mathematics and Economics,
Elsevier, vol. 71(C), pages 317-331.
- Flavia Barsotti & Xavier Milhaud & Yahia Salhi, 2016. "Lapse risk in life insurance: correlation and contagion effects among policyholders' behaviors," Working Papers hal-01282601, HAL.
- Lukas Gonon & Christoph Schwab, 2021. "Deep ReLU network expression rates for option prices in high-dimensional, exponential Lévy models," Finance and Stochastics, Springer, vol. 25(4), pages 615-657, October.
- Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
- Constantinos Kardaras, 2009. "No‐Free‐Lunch Equivalences For Exponential Lévy Models Under Convex Constraints On Investment," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 161-187, April.
- Thorsten Rheinländer & Gallus Steiger, 2010. "Utility Indifference Hedging with Exponential Additive Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(2), pages 151-169, June.
- Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 55-65.
- Liu, Wenyue & Cadenillas, Abel, 2023. "Optimal insurance contracts for a shot-noise Cox claim process and persistent insured's actions," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 69-93.
- Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
- L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
- Yinghui Dong & Kam C. Yuen & Guojing Wang & Chongfeng Wu, 2016. "A Reduced-Form Model for Correlated Defaults with Regime-Switching Shot Noise Intensities," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 459-486, June.
- Ji, Jingru & Wang, Donghua & Xu, Dinghai & Xu, Chi, 2020. "Combining a self-exciting point process with the truncated generalized Pareto distribution: An extreme risk analysis under price limits," Journal of Empirical Finance, Elsevier, vol. 57(C), pages 52-70.
More about this item
Keywords
shot-noise processes; tail dependence; catastrophe derivatives; marked point process; minimum-distance estimation; self-exciting processes; CAT bonds;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:2:y:2014:i:1:p:3-24:d:33264. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.