IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v77y2007i12p1332-1338.html
   My bibliography  Save this article

Shot-noise processes and the minimal martingale measure

Author

Listed:
  • Schmidt, Thorsten
  • Stute, Winfried

Abstract

This article proposes a model for stock prices which incorporates shot-noise effects. This means, that sudden jumps in the stock price are allowed, but their effect may decline as time passes by. Our model is general enough to capture arbitrary effects of this type. Generalizing previous approaches to shot noise we in particular allow the decay to be stochastic. This model describes an incomplete market, so that the martingale measure is not unique. We derive the minimal martingale measure via continuous time methods.

Suggested Citation

  • Schmidt, Thorsten & Stute, Winfried, 2007. "Shot-noise processes and the minimal martingale measure," Statistics & Probability Letters, Elsevier, vol. 77(12), pages 1332-1338, July.
  • Handle: RePEc:eee:stapro:v:77:y:2007:i:12:p:1332-1338
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00096-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gaspar, Raquel M. & Schmidt, Thorsten, 2005. "Quadratic Portfolio Credit Risk models with Shot-noise Effects," SSE/EFI Working Paper Series in Economics and Finance 616, Stockholm School of Economics.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junna Bi & Junyi Guo, 2013. "Optimal Mean-Variance Problem with Constrained Controls in a Jump-Diffusion Financial Market for an Insurer," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 252-275, April.
    2. Thorsten Schmidt & Alexander Novikov, 2008. "A Structural Model with Unobserved Default Boundary," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(2), pages 183-203.
    3. Li, Xiaohu & Wu, Jintang, 2014. "Asymptotic tail behavior of Poisson shot-noise processes with interdependence between shock and arrival time," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 15-26.
    4. Yan, Jun, 2017. "Deviations and asymptotic behavior of convex and coherent entropic risk measures for compound Poisson process influenced by jump times," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 71-79.
    5. Thorsten Schmidt, 2014. "Catastrophe Insurance Modeled by Shot-Noise Processes," Risks, MDPI, vol. 2(1), pages 1-22, February.
    6. Kai Kopperschmidt & Winfried Stute, 2009. "Purchase timing models in marketing: a review," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 93(2), pages 123-149, June.
    7. Liang, Xiaoqing & Lu, Yi, 2017. "Indifference pricing of a life insurance portfolio with risky asset driven by a shot-noise process," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 119-132.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kau, James B. & Keenan, Donald C., 1999. "Patterns of rational default," Regional Science and Urban Economics, Elsevier, vol. 29(6), pages 765-785, November.
    2. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    3. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    4. Sergio Zúñiga, 1999. "Modelos de Tasas de Interés en Chile: Una Revisión," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 36(108), pages 875-893.
    5. Chenxu Li, 2014. "Closed-Form Expansion, Conditional Expectation, and Option Valuation," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 487-516, May.
    6. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    7. Sorwar, Ghulam & Barone-Adesi, Giovanni & Allegretto, Walter, 2007. "Valuation of derivatives based on single-factor interest rate models," Global Finance Journal, Elsevier, vol. 18(2), pages 251-269.
    8. John T. Barkoulas & Christopher F. Baum & Joseph Onochie, 1997. "A nonparametric investigation of the 90‐day t‐bill rate," Review of Financial Economics, John Wiley & Sons, vol. 6(2), pages 187-198.
    9. Richard Jordan & Charles Tier, 2016. "Asymptotic Approximations For Pricing Derivatives Under Mean-Reverting Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-31, August.
    10. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    11. Rosa Ferrentino & Luca Vota, 2022. "A Mathematical Model for the Pricing of Derivative Financial Products: the Role of the Banking Supervision and of the Model Risk," Journal of Finance and Investment Analysis, SCIENPRESS Ltd, vol. 11(1), pages 1-2.
    12. Choi, Jaehyung, 2012. "Spontaneous symmetry breaking of arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3206-3218.
    13. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    14. Antonio Mele, 2003. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 679-716, July.
    15. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    16. Virmani, Vineet, 2014. "Model Risk in Pricing Path-dependent Derivatives: An Illustration," IIMA Working Papers WP2014-03-22, Indian Institute of Management Ahmedabad, Research and Publication Department.
    17. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    18. Lok Man Michel Tong & Gianluca Marcato, 2018. "Modelling Competitive Mortgage Termination Option Strategies: Default vs Restructuring and Prepayment vs Defeasance," ERES eres2018_300, European Real Estate Society (ERES).
    19. Svensson, Lars E. O., 1991. "The term structure of interest rate differentials in a target zone : Theory and Swedish data," Journal of Monetary Economics, Elsevier, vol. 28(1), pages 87-116, August.
    20. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:77:y:2007:i:12:p:1332-1338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.