IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v155y2019icp347-359.html
   My bibliography  Save this article

Existence and exponential behavior of multi-valued nonlinear fractional stochastic integro-differential equations with Poisson jumps of Clarke’s subdifferential type

Author

Listed:
  • Durga, N.
  • Muthukumar, P.

Abstract

This manuscript addresses the study of a new class of multi-valued nonlinear fractional stochastic integro-differential equations with Poisson jumps of Clarke’s subdifferential type in Hilbert space of order 1<α<2. Initially, by using α-resolvent operator, Holder inequality, properties of Clarke’s generalized subdifferential, fractional calculus and the multi-valued fixed point theorem due to Dhage, the existence result for the proposed system is obtained. Further, the sufficient conditions are established to ensure that exponential decay of mild solution to zero in the square mean. Finally, the obtained results are applied to fractional stochastic hemivariational inequalities. An example is illustrated for the development of obtained results.

Suggested Citation

  • Durga, N. & Muthukumar, P., 2019. "Existence and exponential behavior of multi-valued nonlinear fractional stochastic integro-differential equations with Poisson jumps of Clarke’s subdifferential type," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 347-359.
  • Handle: RePEc:eee:matcom:v:155:y:2019:i:c:p:347-359
    DOI: 10.1016/j.matcom.2018.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475418301964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2018.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Liang & Liu, Zhenhai & Bin, Maojun, 2016. "Approximate controllability for stochastic evolution inclusions of Clarke’s subdifferential type," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 201-212.
    2. Thorsten Schmidt, 2014. "Catastrophe Insurance Modeled by Shot-Noise Processes," Risks, MDPI, vol. 2(1), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Upadhyay, Anjali & Kumar, Surendra, 2023. "The exponential nature and solvability of stochastic multi-term fractional differential inclusions with Clarke’s subdifferential," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 55-65.
    2. Liu, Wenyue & Cadenillas, Abel, 2023. "Optimal insurance contracts for a shot-noise Cox claim process and persistent insured's actions," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 69-93.
    3. Sukono & Hafizan Juahir & Riza Andrian Ibrahim & Moch Panji Agung Saputra & Yuyun Hidayat & Igif Gimin Prihanto, 2022. "Application of Compound Poisson Process in Pricing Catastrophe Bonds: A Systematic Literature Review," Mathematics, MDPI, vol. 10(15), pages 1-19, July.
    4. Sarah Bensalem & Nicolás Hernández-Santibáñez & Nabil Kazi-Tani, 2023. "A continuous-time model of self-protection," Finance and Stochastics, Springer, vol. 27(2), pages 503-537, April.
    5. Kavitha, K. & Vijayakumar, V. & Shukla, Anurag & Nisar, Kottakkaran Sooppy & Udhayakumar, R., 2021. "Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Jang, Jiwook & Dassios, Angelos & Zhao, Hongbiao, 2018. "Moments of renewal shot-noise processes and their applications," LSE Research Online Documents on Economics 87428, London School of Economics and Political Science, LSE Library.
    7. Zied Chaieb & Djibril Gueye, 2022. "Pricing zero-coupon CAT bonds using the enlargement of ltration theory: a general framework ," Post-Print hal-03745077, HAL.
    8. Krzysztof Burnecki & Mario Nicoló Giuricich, 2017. "Stable Weak Approximation at Work in Index-Linked Catastrophe Bond Pricing," Risks, MDPI, vol. 5(4), pages 1-19, December.
    9. Claudia Ceci & Katia Colaneri & Alessandra Cretarola, 2021. "Optimal Reinsurance and Investment under Common Shock Dependence Between Financial and Actuarial Markets," Papers 2105.07524, arXiv.org.
    10. Zied Chaieb & Djibril Gueye, 2022. "Pricing zero-coupon CAT bonds using the enlargement of ltration theory: a general framework," Papers 2208.02609, arXiv.org.
    11. Avanzi, Benjamin & Wong, Bernard & Yang, Xinda, 2016. "A micro-level claim count model with overdispersion and reporting delays," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 1-14.
    12. Yiqing Chen, 2019. "A Renewal Shot Noise Process with Subexponential Shot Marks," Risks, MDPI, vol. 7(2), pages 1-8, June.
    13. Upadhyay, Anjali & Kumar, Surendra, 2023. "The exponential nature and solvability of stochastic multi-term fractional differential inclusions with Clarke’s subdifferential," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    14. Masahiko Egami & Rusudan Kevkhishvili, 2016. "An Analysis of Simultaneous Company Defaults Using a Shot Noise Process," Discussion papers e-16-001, Graduate School of Economics , Kyoto University.
    15. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," LSE Research Online Documents on Economics 64051, London School of Economics and Political Science, LSE Library.
    16. Riza Andrian Ibrahim & Sukono & Herlina Napitupulu, 2022. "Multiple-Trigger Catastrophe Bond Pricing Model and Its Simulation Using Numerical Methods," Mathematics, MDPI, vol. 10(9), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:155:y:2019:i:c:p:347-359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.