IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v12y2024i11p172-d1510484.html
   My bibliography  Save this article

Effective Machine Learning Techniques for Dealing with Poor Credit Data

Author

Listed:
  • Dumisani Selby Nkambule

    (Postgraduate School of Engineering Management, University of Johannesburg, Auckland Park, Johannesburg 2001, South Africa)

  • Bhekisipho Twala

    (Office of the DVC (Digital Transformation), Tshwane University of Technology, Staatsatillerie Rd, Pretoria West Pretoria, Pretoria 0183, South Africa)

  • Jan Harm Christiaan Pretorius

    (Postgraduate School of Engineering Management, University of Johannesburg, Auckland Park, Johannesburg 2001, South Africa)

Abstract

Credit risk is a crucial component of daily financial services operations; it measures the likelihood that a borrower will default on a loan, incurring an economic loss. By analysing historical data for assessment of the creditworthiness of a borrower, lenders can reduce credit risk. Data are vital at the core of the credit decision-making processes. Decision-making depends heavily on accurate, complete data, and failure to harness high-quality data would impact credit lenders when assessing the loan applicants’ risk profiles. In this paper, an empirical comparison of the robustness of seven machine learning algorithms to credit risk, namely support vector machines (SVMs), naïve base, decision trees (DT), random forest (RF), gradient boosting (GB), K-nearest neighbour (K-NN), and logistic regression (LR), is carried out using the Lending Club credit data from Kaggle. This task uses seven performance measures, including the F1 Score (recall, accuracy, and precision), ROC-AUC, and HL and MCC metrics. Then, the harnessing of generative adversarial networks (GANs) simulation to enhance the robustness of the single machine learning classifiers for predicting credit risk is proposed. The results show that when GANs imputation is incorporated, the decision tree is the best-performing classifier with an accuracy rate of 93.01%, followed by random forest (92.92%), gradient boosting (92.33%), support vector machine (90.83%), logistic regression (90.76%), and naïve Bayes (89.29%), respectively. The classifier is the worst-performing method with a k-NN (88.68%) accuracy rate. Subsequently, when GANs are optimised, the accuracy rate of the naïve Bayes classifier improves significantly to (90%) accuracy rate. Additionally, the average error rate for these classifiers is over 9%, which implies that the estimates are not far from the actual values. In summary, most individual classifiers are more robust to missing data when GANs are used as an imputation technique. The differences in performance of all seven machine learning algorithms are significant at the 95% level.

Suggested Citation

  • Dumisani Selby Nkambule & Bhekisipho Twala & Jan Harm Christiaan Pretorius, 2024. "Effective Machine Learning Techniques for Dealing with Poor Credit Data," Risks, MDPI, vol. 12(11), pages 1-19, October.
  • Handle: RePEc:gam:jrisks:v:12:y:2024:i:11:p:172-:d:1510484
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/12/11/172/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/12/11/172/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paleologo, Giuseppe & Elisseeff, André & Antonini, Gianluca, 2010. "Subagging for credit scoring models," European Journal of Operational Research, Elsevier, vol. 201(2), pages 490-499, March.
    2. G Castermans & D Martens & T Van Gestel & B Hamers & B Baesens, 2010. "An overview and framework for PD backtesting and benchmarking," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 359-373, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
    2. Nadia Ayed & Khemaies Bougatef, 2024. "Performance Assessment of Logistic Regression (LR), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS) in Predicting Default Probability: The Case of," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1803-1835, September.
    3. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    4. Guotai Chi & Zhipeng Zhang, 2017. "Multi Criteria Credit Rating Model for Small Enterprise Using a Nonparametric Method," Sustainability, MDPI, vol. 9(10), pages 1-23, October.
    5. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    6. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    7. K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
    8. Rais Ahmad Itoo & A. Selvarasu & José António Filipe, 2015. "Loan Products and Credit Scoring by Commercial Banks (India)," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 5(1), pages 851-851.
    9. Emmanuel Flachaire & Sullivan Hué & Sébastien Laurent & Gilles Hacheme, 2024. "Interpretable Machine Learning Using Partial Linear Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 519-540, June.
    10. Coussement, Kristof & Buckinx, Wouter, 2011. "A probability-mapping algorithm for calibrating the posterior probabilities: A direct marketing application," European Journal of Operational Research, Elsevier, vol. 214(3), pages 732-738, November.
    11. D. Th. Vezeris & C. J. Schinas & Th. S. Kyrgos & V. A. Bizergianidou & I. P. Karkanis, 2020. "Optimization of Backtesting Techniques in Automated High Frequency Trading Systems Using the d-Backtest PS Method," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 975-1054, December.
    12. Parisa Golbayani & Ionuc{t} Florescu & Rupak Chatterjee, 2020. "A comparative study of forecasting Corporate Credit Ratings using Neural Networks, Support Vector Machines, and Decision Trees," Papers 2007.06617, arXiv.org.
    13. Chen, Dangxing & Ye, Jiahui & Ye, Weicheng, 2023. "Interpretable selective learning in credit risk," Research in International Business and Finance, Elsevier, vol. 65(C).
    14. Bravo, Cristián & Maldonado, Sebastián & Weber, Richard, 2013. "Granting and managing loans for micro-entrepreneurs: New developments and practical experiences," European Journal of Operational Research, Elsevier, vol. 227(2), pages 358-366.
    15. Sullivan Hué, 2022. "GAM(L)A: An econometric model for interpretable machine learning," French Stata Users' Group Meetings 2022 19, Stata Users Group.
    16. Kolesnikova, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2019. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," IRTG 1792 Discussion Papers 2019-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    17. Saba Moradi & Farimah Mokhatab Rafiei, 2019. "A dynamic credit risk assessment model with data mining techniques: evidence from Iranian banks," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-27, December.
    18. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    19. Finlay, Steven, 2011. "Multiple classifier architectures and their application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 210(2), pages 368-378, April.
    20. Golbayani, Parisa & Florescu, Ionuţ & Chatterjee, Rupak, 2020. "A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:12:y:2024:i:11:p:172-:d:1510484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.