IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v9y2020i8p93-d398914.html
   My bibliography  Save this article

An Environmental Assessment of Interlocking Concrete Blocks Mixed with Sugarcane Residues Produced in Okinawa

Author

Listed:
  • Bruno Ribeiro

    (Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto 606-8501, Japan
    Graduate School of Engineering, Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto 606-8501, Japan
    Faculty of Engineering, School of Engineering, Civil Engineering Program, University of Ryukyus, Nishihara 903-0213, Japan)

  • Tadaaki Uchiyama

    (Quality Control Department, Kyoritsu Corporation, Uruma 904-1111, Japan)

  • Jun Tomiyama

    (Faculty of Engineering, School of Engineering, Civil Engineering Program, University of Ryukyus, Nishihara 903-0213, Japan)

  • Takashi Yamamoto

    (Graduate School of Engineering, Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto 606-8501, Japan)

  • Yosuke Yamashiki

    (Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto 606-8501, Japan)

Abstract

The use of sugarcane residues in mortar and concrete is believed to contribute to the reduction of environmental problems, such as the reduction of mining of natural aggregates as well as the improper disposal of sugarcane residues. Therefore, in this study, bagasse fiber and bagasse sand were added into the preparation of the interlocking concrete blocks, and the flexural strength and an environmental assessment of the blocks were analyzed. The flexural strength of the blocks was not affected by the addition of the bagasse fiber and bagasse sand. In addition, the environmental load of interlocking concrete blocks using sugarcane residues was lower than the blocks using conventional aggregates due to the greater simplicity of acquisition of the residues. Moreover, in the scenarios where the blocks are supposedly made on smaller islands, the emissions increased due to long-distance transportation, since conventional aggregates come from other islands.

Suggested Citation

  • Bruno Ribeiro & Tadaaki Uchiyama & Jun Tomiyama & Takashi Yamamoto & Yosuke Yamashiki, 2020. "An Environmental Assessment of Interlocking Concrete Blocks Mixed with Sugarcane Residues Produced in Okinawa," Resources, MDPI, vol. 9(8), pages 1-11, August.
  • Handle: RePEc:gam:jresou:v:9:y:2020:i:8:p:93-:d:398914
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/9/8/93/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/9/8/93/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Lizhen & Krigsvoll, Guri & Johansen, Fred & Liu, Yongping & Zhang, Xiaoling, 2018. "Carbon emission of global construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1906-1916.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albert, Osei-Owusu Kwame & Marianne, Thomsen & Jonathan, Lindahl & Nino, Javakhishvili Larsen & Dario, Caro, 2020. "Tracking the carbon emissions of Denmark's five regions from a producer and consumer perspective," Ecological Economics, Elsevier, vol. 177(C).
    2. Anna Życzyńska & Dariusz Majerek & Zbigniew Suchorab & Agnieszka Żelazna & Václav Kočí & Robert Černý, 2021. "Improving the Energy Performance of Public Buildings Equipped with Individual Gas Boilers Due to Thermal Retrofitting," Energies, MDPI, vol. 14(6), pages 1-19, March.
    3. Khozema Ahmed Ali & Mardiana Idayu Ahmad & Yusri Yusup, 2020. "Issues, Impacts, and Mitigations of Carbon Dioxide Emissions in the Building Sector," Sustainability, MDPI, vol. 12(18), pages 1-11, September.
    4. Zhang, Yanfang & Gao, Qi & Wei, Jinpeng & Shi, Xunpeng & Zhou, Dequn, 2023. "Can China's energy-consumption permit trading scheme achieve the “Porter” effect? Evidence from an estimated DSGE model," Energy Policy, Elsevier, vol. 180(C).
    5. Liu, Lirong & Huang, Guohe & Baetz, Brian & Huang, Charley Z. & Zhang, Kaiqiang, 2019. "Integrated GHG emissions and emission relationships analysis through a disaggregated ecologically-extended input-output model; A case study for Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 97-109.
    6. Marin Pellan & Denise Almeida & Mathilde Louërat & Guillaume Habert, 2024. "Integrating Consumption-Based Metrics into Sectoral Carbon Budgets to Enhance Sustainability Monitoring of Building Activities," Sustainability, MDPI, vol. 16(16), pages 1-25, August.
    7. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Farid Shahnavaz & Reza Akhavian, 2022. "Automated Estimation of Construction Equipment Emission Using Inertial Sensors and Machine Learning Models," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    9. Wenchao Li & Jian Xu & Zhengming Wang & Jialiang Yang, 2020. "The impact of LCTI on China's low-carbon transformation from the spatial spillover perspective," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-11, November.
    10. Yeguan Yu, 2023. "The Impact of Financial System on Carbon Intensity: From the Perspective of Digitalization," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    11. Li, Dezhi & Huang, Guanying & Zhu, Shiyao & Chen, Long & Wang, Jiangbo, 2021. "How to peak carbon emissions of provincial construction industry? Scenario analysis of Jiangsu Province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Lachlan Curmi & Kumudu Kaushalya Weththasinghe & Muhammad Atiq Ur Rehman Tariq, 2022. "Global Policy Review on Embodied Flows: Recommendations for Australian Construction Sector," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    13. Yanfang Dong & Caihang Liang & Lili Guo & Xiaoliang Cai & Weipeng Hu, 2023. "Life Cycle Carbon Dioxide Emissions and Sensitivity Analysis of Elevators," Sustainability, MDPI, vol. 15(17), pages 1-23, August.
    14. Alberto Bezama & Jakob Hildebrandt & Daniela Thrän, 2021. "Integrating Regionalized Socioeconomic Considerations onto Life Cycle Assessment for Evaluating Bioeconomy Value Chains: A Case Study on Hybrid Wood–Concrete Ceiling Elements," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    15. Long Li & Yinting Li, 2022. "The Spatial Relationship between CO 2 Emissions and Economic Growth in the Construction Industry: Based on the Tapio Decoupling Model and STIRPAT Model," Sustainability, MDPI, vol. 15(1), pages 1-12, December.
    16. Mengcheng Li & Haimeng Liu & Shangkun Yu & Jianshi Wang & Yi Miao & Chengxin Wang, 2022. "Estimating the Decoupling between Net Carbon Emissions and Construction Land and Its Driving Factors: Evidence from Shandong Province, China," IJERPH, MDPI, vol. 19(15), pages 1-26, July.
    17. Senchang Hu & Shaoyi Li & Xiangxin Meng & Yingzheng Peng & Wenzhe Tang, 2023. "Study on Regional Differences of Carbon Emission Efficiency: Evidence from Chinese Construction Industry," Energies, MDPI, vol. 16(19), pages 1-20, September.
    18. Karlsson, Ida & Rootzén, Johan & Johnsson, Filip, 2020. "Reaching net-zero carbon emissions in construction supply chains – Analysis of a Swedish road construction project," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    19. Liliana Lizárraga-Mendiola & Luis D. López-León & Gabriela A. Vázquez-Rodríguez, 2022. "Municipal Solid Waste as a Substitute for Virgin Materials in the Construction Industry: A Review," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    20. Klara Granheimer & Per-Erik Eriksson & Tina Karrbom Gustavsson, 2022. "Adaptability in Public Procurement of Engineering Services Promoting Carbon Reduction: An Organizational Control Perspective," Sustainability, MDPI, vol. 14(10), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:9:y:2020:i:8:p:93-:d:398914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.