IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6882-d1250727.html
   My bibliography  Save this article

Study on Regional Differences of Carbon Emission Efficiency: Evidence from Chinese Construction Industry

Author

Listed:
  • Senchang Hu

    (State Key Laboratory of Hydroscience and Engineering, Institute of Project Management and Construction Technology, Tsinghua University, Beijing 100084, China)

  • Shaoyi Li

    (State Key Laboratory of Hydroscience and Engineering, Institute of Project Management and Construction Technology, Tsinghua University, Beijing 100084, China)

  • Xiangxin Meng

    (State Key Laboratory of Hydroscience and Engineering, Institute of Project Management and Construction Technology, Tsinghua University, Beijing 100084, China)

  • Yingzheng Peng

    (State Key Laboratory of Hydroscience and Engineering, Institute of Project Management and Construction Technology, Tsinghua University, Beijing 100084, China)

  • Wenzhe Tang

    (State Key Laboratory of Hydroscience and Engineering, Institute of Project Management and Construction Technology, Tsinghua University, Beijing 100084, China)

Abstract

The escalating issue of global climate change necessitates urgent measures to reduce carbon emissions globally. Within this context, the construction industry emerges as a critical sector to address given its high energy consumption, substantial CO 2 emissions, and low utilization rate. Therefore, it is pivotal to foster energy conservation and reduce emissions in this sector. To this end, this paper delineates two primary objectives: (1) identifying optimal research methodologies and index parameters for evaluating carbon emission efficiency in the construction industry, and (2) assessing the variance in carbon emission efficiency at disparate stages and regions. Leveraging the Malmquist index, we scrutinize the carbon emission data from 30 Chinese provinces spanning from 2010 to 2019. Our findings indicate a geographical dichotomy in China’s construction industry’s carbon emission efficiency—lower in the west and higher in the east. Additionally, this study delves into the distinguishing features of emission efficiency alterations across regions, the main influencing factors, and avenues for enhancement. Subsequently, it proposes policy recommendations tailored to the unique attributes of various regions and the overarching framework.

Suggested Citation

  • Senchang Hu & Shaoyi Li & Xiangxin Meng & Yingzheng Peng & Wenzhe Tang, 2023. "Study on Regional Differences of Carbon Emission Efficiency: Evidence from Chinese Construction Industry," Energies, MDPI, vol. 16(19), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6882-:d:1250727
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6882/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6882/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kocher, Martin G. & Luptacik, Mikulas & Sutter, Matthias, 2006. "Measuring productivity of research in economics: A cross-country study using DEA," Socio-Economic Planning Sciences, Elsevier, vol. 40(4), pages 314-332, December.
    2. Duan, Na & Guo, Jun-Peng & Xie, Bai-Chen, 2016. "Is there a difference between the energy and CO2 emission performance for China’s thermal power industry? A bootstrapped directional distance function approach," Applied Energy, Elsevier, vol. 162(C), pages 1552-1563.
    3. Charnes, A. & Cooper, W. W. & Huang, Z. M. & Sun, D. B., 1990. "Polyhedral Cone-Ratio DEA Models with an illustrative application to large commercial banks," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 73-91.
    4. Zhou, Guanghui & Chung, William & Zhang, Xiliang, 2013. "A study of carbon dioxide emissions performance of China's transport sector," Energy, Elsevier, vol. 50(C), pages 302-314.
    5. Chang, Young-Tae & Zhang, Ning & Danao, Denise & Zhang, Nan, 2013. "Environmental efficiency analysis of transportation system in China: A non-radial DEA approach," Energy Policy, Elsevier, vol. 58(C), pages 277-283.
    6. Zhang, Ning & Choi, Yongrok, 2013. "A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea," Energy Policy, Elsevier, vol. 62(C), pages 324-332.
    7. Huang, Lizhen & Krigsvoll, Guri & Johansen, Fred & Liu, Yongping & Zhang, Xiaoling, 2018. "Carbon emission of global construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1906-1916.
    8. Wang, Qunwei & Zhao, Zengyao & Zhou, Peng & Zhou, Dequn, 2013. "Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach," Economic Modelling, Elsevier, vol. 35(C), pages 283-289.
    9. Sun, J. W., 2005. "The decrease of CO2 emission intensity is decarbonization at national and global levels," Energy Policy, Elsevier, vol. 33(8), pages 975-978, May.
    10. Weizhong Zhou & Wenhua Yu & Ahmed Farouk, 2021. "Regional Variation in the Carbon Dioxide Emission Efficiency of Construction Industry in China: Based on the Three-Stage DEA Model," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-13, August.
    11. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    12. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    13. Charnes, A. & Cooper, W. W., 1984. "The non-archimedean CCR ratio for efficiency analysis: A rejoinder to Boyd and Fare," European Journal of Operational Research, Elsevier, vol. 15(3), pages 333-334, March.
    14. Wang, Q.W. & Zhou, P. & Shen, N. & Wang, S.S., 2013. "Measuring carbon dioxide emission performance in Chinese provinces: A parametric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 324-330.
    15. Zhang, Ning & Wei, Xiao, 2015. "Dynamic total factor carbon emissions performance changes in the Chinese transportation industry," Applied Energy, Elsevier, vol. 146(C), pages 409-420.
    16. Ramanathan, Ramakrishnan, 2005. "An analysis of energy consumption and carbon dioxide emissions in countries of the Middle East and North Africa," Energy, Elsevier, vol. 30(15), pages 2831-2842.
    17. Pérez, Karen & González-Araya, Marcela C. & Iriarte, Alfredo, 2017. "Energy and GHG emission efficiency in the Chilean manufacturing industry: Sectoral and regional analysis by DEA and Malmquist indexes," Energy Economics, Elsevier, vol. 66(C), pages 290-302.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Wu & Xuan Mei & Haili Zhou, 2024. "Measurement and Analysis of Carbon Emission Efficiency in the Three Urban Agglomerations of China," Sustainability, MDPI, vol. 16(20), pages 1-16, October.
    2. Juan Tan & Jinyu Wei, 2024. "Balancing Growth and Sustainability: a Regional Analysis of Industrial Carbon Efficiency in China," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 13946-13978, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Xian’En Wang & Shimeng Wang & Xipan Wang & Wenbo Li & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "The Assessment of Carbon Performance under the Region-Sector Perspective based on the Nonparametric Estimation: A Case Study of the Northern Province in China," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    3. Zhang, Ning & Zhou, Peng & Kung, Chih-Chun, 2015. "Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 584-593.
    4. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    5. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    6. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
    7. Lin, Boqiang & Du, Kerui, 2015. "Modeling the dynamics of carbon emission performance in China: A parametric Malmquist index approach," Energy Economics, Elsevier, vol. 49(C), pages 550-557.
    8. Zhang, Ning & Wei, Xiao, 2015. "Dynamic total factor carbon emissions performance changes in the Chinese transportation industry," Applied Energy, Elsevier, vol. 146(C), pages 409-420.
    9. Lin, Boqiang & Du, Kerui, 2015. "Energy and CO2 emissions performance in China's regional economies: Do market-oriented reforms matter?," Energy Policy, Elsevier, vol. 78(C), pages 113-124.
    10. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.
    11. Zhang, Ning & Wang, Bing & Chen, Zhongfei, 2016. "Carbon emissions reductions and technology gaps in the world's factory, 1990–2012," Energy Policy, Elsevier, vol. 91(C), pages 28-37.
    12. Du, Kerui & Li, Jianglong, 2019. "Towards a green world: How do green technology innovations affect total-factor carbon productivity," Energy Policy, Elsevier, vol. 131(C), pages 240-250.
    13. Feng, Chao & Zhang, Hua & Huang, Jian-Bai, 2017. "The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 859-872.
    14. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2017. "Non-radial metafrontier approach to identify carbon emission performance and intensity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 664-672.
    15. Dong, Feng & Li, Xiaohui & Long, Ruyin & Liu, Xiaoyan, 2013. "Regional carbon emission performance in China according to a stochastic frontier model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 525-530.
    16. Huan Zhang & Kangning Xu, 2016. "Impact of Environmental Regulation and Technical Progress on Industrial Carbon Productivity: An Approach Based on Proxy Measure," Sustainability, MDPI, vol. 8(8), pages 1-15, August.
    17. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    18. Li, Jianglong & Lin, Boqiang, 2017. "Does energy and CO2 emissions performance of China benefit from regional integration?," Energy Policy, Elsevier, vol. 101(C), pages 366-378.
    19. Wang, Q.W. & Zhou, P. & Shen, N. & Wang, S.S., 2013. "Measuring carbon dioxide emission performance in Chinese provinces: A parametric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 324-330.
    20. Jie Zhang & Zhencheng Xing & Jigan Wang, 2016. "Analysis of CO 2 Emission Performance and Abatement Potential for Municipal Industrial Sectors in Jiangsu, China," Sustainability, MDPI, vol. 8(7), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6882-:d:1250727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.