IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v7y2018i3p43-d159331.html
   My bibliography  Save this article

Energy Saving Estimation of Athens Trolleybuses Considering Regenerative Braking and Improved Control Scheme

Author

Listed:
  • Nena Apostolidou

    (Department of Electrical & Computer Engineering, Democritus University of Thrace, 67132 Xanthi, Greece)

  • Nick Papanikolaou

    (Department of Electrical & Computer Engineering, Democritus University of Thrace, 67132 Xanthi, Greece)

Abstract

In this work, the electromechanical system of the 8000-series of Athens trolleybuses, based on data provided by OSY S.A., is analyzed. Those data were used to develop a valid model in order to estimate the total energy consumption of the vehicle under any possible operating conditions. In addition, an effort is made to estimate the energy saving potential if the wasted energy—in the form of heat—during braking or downhill courses is recovered (regenerative braking) and retrofitted during normal operation. This process requires the installation of appropriate electrical apparatus to recover and temporarily store this energy amount. Moreover, due to the fact that the main engine of the system is an asynchronous electric machine, its driving scheme is also of interest. This study assumes the current driving scheme, that is the direct vector control (DVC), and proposes an alternative control method, the direct torque control (DTC). Energy consumption/saving calculations highlight the effectiveness of incorporating regenerative braking infrastructure in trolleybuses transportation systems. Finally, a sustainable hybrid energy storage unit that supports regenerative braking is proposed.

Suggested Citation

  • Nena Apostolidou & Nick Papanikolaou, 2018. "Energy Saving Estimation of Athens Trolleybuses Considering Regenerative Braking and Improved Control Scheme," Resources, MDPI, vol. 7(3), pages 1-18, July.
  • Handle: RePEc:gam:jresou:v:7:y:2018:i:3:p:43-:d:159331
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/7/3/43/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/7/3/43/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gang Zhang & Zhongbei Tian & Huiqing Du & Zhigang Liu, 2018. "A Novel Hybrid DC Traction Power Supply System Integrating PV and Reversible Converters," Energies, MDPI, vol. 11(7), pages 1-24, June.
    2. Yang Yang & Xiaolong He & Yi Zhang & Datong Qin, 2018. "Regenerative Braking Compensatory Control Strategy Considering CVT Power Loss for Hybrid Electric Vehicles," Energies, MDPI, vol. 11(3), pages 1-15, February.
    3. Bing Bu & Guoying Qin & Ling Li & Guojie Li, 2018. "An Energy Efficient Train Dispatch and Control Integrated Method in Urban Rail Transit," Energies, MDPI, vol. 11(5), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ģirts Staņa & Jānis Voitkāns & Kaspars Kroičs, 2023. "Supercapacitor Constant-Current and Constant-Power Charging and Discharging Comparison under Equal Boundary Conditions for DC Microgrid Application," Energies, MDPI, vol. 16(10), pages 1-27, May.
    2. Nick Rigogiannis & Ioannis Bogatsis & Christos Pechlivanis & Anastasios Kyritsis & Nick Papanikolaou, 2023. "Moving towards Greener Road Transportation: A Review," Clean Technol., MDPI, vol. 5(2), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Yang & Qiang He & Yongzheng Chen & Chunyun Fu, 2020. "Efficiency Optimization and Control Strategy of Regenerative Braking System with Dual Motor," Energies, MDPI, vol. 13(3), pages 1-21, February.
    2. Mihaela Popescu & Alexandru Bitoleanu, 2019. "A Review of the Energy Efficiency Improvement in DC Railway Systems," Energies, MDPI, vol. 12(6), pages 1-25, March.
    3. Stefano Menicanti & Marco di Benedetto & Davide Marinelli & Fabio Crescimbini, 2022. "Recovery of Trains’ Braking Energy in a Railway Micro-Grid Devoted to Train plus Electric Vehicle Integrated Mobility," Energies, MDPI, vol. 15(4), pages 1-25, February.
    4. Yang, Chao & Sun, Tonglin & Wang, Weida & Li, Ying & Zhang, Yuhang & Zha, Mingjun, 2024. "Regenerative braking system development and perspectives for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    5. Artur Kierzkowski & Szymon Haładyn, 2022. "Method for Reconfiguring Train Schedules Taking into Account the Global Reduction of Railway Energy Consumption," Energies, MDPI, vol. 15(5), pages 1-18, March.
    6. Zhongbei Tian & Ning Zhao & Stuart Hillmansen & Shuai Su & Chenglin Wen, 2020. "Traction Power Substation Load Analysis with Various Train Operating Styles and Substation Fault Modes," Energies, MDPI, vol. 13(11), pages 1-18, June.
    7. Nursaid Polater & Pietro Tricoli, 2022. "Technical Review of Traction Drive Systems for Light Railways," Energies, MDPI, vol. 15(9), pages 1-26, April.
    8. Zhou, Wenliang & Huang, Yu & Deng, Lianbo & Qin, Jin, 2023. "Collaborative optimization of energy-efficient train schedule and train circulation plan for urban rail," Energy, Elsevier, vol. 263(PA).
    9. Franciszek Restel & Szymon Mateusz Haładyn, 2022. "The Railway Timetable Evaluation Method in Terms of Operational Robustness against Overloads of the Power Supply System," Energies, MDPI, vol. 15(17), pages 1-17, September.
    10. Hyung-jin Do & Se-hoon Oh, 2022. "CVT for a Small Electric Vehicle Using Centrifugal Belt Pulley," Energies, MDPI, vol. 15(23), pages 1-15, November.
    11. Hu, Jianjun & Mei, Bo & Peng, Hang & Guo, Zihan, 2019. "Discretely variable speed ratio control strategy for continuously variable transmission system considering hydraulic energy loss," Energy, Elsevier, vol. 180(C), pages 714-727.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:7:y:2018:i:3:p:43-:d:159331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.