IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v7y2018i2p32-d148751.html
   My bibliography  Save this article

An Assessment of Airport Sustainability, Part 2—Energy Management at Copenhagen Airport

Author

Listed:
  • Glenn Baxter

    (School of Tourism and Hospitality Management, Suan Dusit University, Hua Hin, Prachaup Khiri Khan 77110, Thailand)

  • Panarat Srisaeng

    (School of Tourism and Hospitality Management, Suan Dusit University, Hua Hin, Prachaup Khiri Khan 77110, Thailand)

  • Graham Wild

    (School of Engineering, RMIT University, Melbourne, VIC 3000, Australia)

Abstract

Airports play a critical role in the air transport value chain. Each air transport value chain stakeholder requires energy to conduct their operations. Airports are extremely energy intensive. Greenhouse gases are a by-product from energy generation and usage. Consequently, airports are increasingly trying to sustainably manage their energy requirements as part of their environmental policies and strategies. This study used an exploratory qualitative and quantitative case study research approach to empirically examine Copenhagen Airport, Scandinavia’s major air traffic hub, sustainable airport energy management practices and energy-saving initiatives. For Copenhagen Airport, the most significant environmental impact factors occurring from energy usage are the CO 2 emissions arising from both the air side and land side operations. Considering this, the airport has identified many ways to manage and mitigate the environmental impact from energy consumption on both the air and land side operations. Importantly, the application of technological solutions, systems and process enhancements and collaboration with key stakeholders has contributed to the airport’s success in mitigating the environmental impact from energy usage at the airport whilst at the same time achieving energy savings.

Suggested Citation

  • Glenn Baxter & Panarat Srisaeng & Graham Wild, 2018. "An Assessment of Airport Sustainability, Part 2—Energy Management at Copenhagen Airport," Resources, MDPI, vol. 7(2), pages 1-27, May.
  • Handle: RePEc:gam:jresou:v:7:y:2018:i:2:p:32-:d:148751
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/7/2/32/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/7/2/32/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giustozzi, Filippo & Toraldo, Emanuele & Crispino, Maurizio, 2012. "Recycled airport pavements for achieving environmental sustainability: An Italian case study," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 67-75.
    2. Sergio Ortega Alba & Mario Manana, 2016. "Energy Research in Airports: A Review," Energies, MDPI, vol. 9(5), pages 1-19, May.
    3. Sergio Ortega Alba & Mario Manana, 2017. "Characterization and Analysis of Energy Demand Patterns in Airports," Energies, MDPI, vol. 10(1), pages 1-35, January.
    4. Sukumaran, Sreenath & Sudhakar, K., 2017. "Fully solar powered airport: A case study of Cochin International airport," Journal of Air Transport Management, Elsevier, vol. 62(C), pages 176-188.
    5. Gegg, Per & Budd, Lucy & Ison, Stephen, 2014. "The market development of aviation biofuel: Drivers and constraints," Journal of Air Transport Management, Elsevier, vol. 39(C), pages 34-40.
    6. Mehmet Kadri Akyüz & Önder Altuntaş & Mehmet Ziya Söğüt, 2017. "Economic and Environmental Optimization of an Airport Terminal Building’s Wall and Roof Insulation," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Eid & May Salah & Mahmoud Barakat & Matevz Obrecht, 2022. "Airport Sustainability Awareness: A Theoretical Framework," Sustainability, MDPI, vol. 14(19), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cuadra, L. & Ocampo-Estrella, I. & Alexandre, E. & Salcedo-Sanz, S., 2019. "A study on the impact of easements in the deployment of wind farms near airport facilities," Renewable Energy, Elsevier, vol. 135(C), pages 566-588.
    2. Mehmet Kadri Akyüz & Önder Altuntaş & Mehmet Ziya Söğüt, 2017. "Economic and Environmental Optimization of an Airport Terminal Building’s Wall and Roof Insulation," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    3. Zoutendijk, M. & Mitici, M., 2024. "Fleet scheduling for electric towing of aircraft under limited airport energy capacity," Energy, Elsevier, vol. 294(C).
    4. Sreenath, S. & Sudhakar, K. & Yusop, A.F., 2020. "Technical assessment of captive solar power plant: A case study of Senai airport, Malaysia," Renewable Energy, Elsevier, vol. 152(C), pages 849-866.
    5. Filimonau, Viachaslau & Högström, Michaela, 2017. "The attitudes of UK tourists to the use of biofuels in civil aviation: An exploratory study," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 84-94.
    6. Ahmed Eid & May Salah & Mahmoud Barakat & Matevz Obrecht, 2022. "Airport Sustainability Awareness: A Theoretical Framework," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    7. Enrico Mancinelli & Francesco Canestrari & Andrea Graziani & Umberto Rizza & Giorgio Passerini, 2021. "Sustainable Performances of Small to Medium-Sized Airports in the Adriatic Region," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    8. Liu, Xiaochen & Zhang, Tao & Liu, Xiaohua & Li, Lingshan & Lin, Lin & Jiang, Yi, 2021. "Energy saving potential for space heating in Chinese airport terminals: The impact of air infiltration," Energy, Elsevier, vol. 215(PB).
    9. Winchester, Niven & Malina, Robert & Staples, Mark D. & Barrett, Steven R.H., 2015. "The impact of advanced biofuels on aviation emissions and operations in the U.S," Energy Economics, Elsevier, vol. 49(C), pages 482-491.
    10. Xu, Ruoyu & Liu, Xiaochen & Liu, Xiaohua & Zhang, Tao, 2024. "Quantifying the energy flexibility potential of a centralized air-conditioning system: A field test study of hub airports," Energy, Elsevier, vol. 298(C).
    11. Matteo Prussi & Aikaterini Konti & Laura Lonza, 2019. "Could Biomass Derived Fuels Bridge the Emissions Gap between High Speed Rail and Aviation?," Sustainability, MDPI, vol. 11(4), pages 1-12, February.
    12. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    13. Arunodaya Raj Mishra & Pratibha Rani & Fausto Cavallaro & Ibrahim M. Hezam, 2023. "An IVIF-Distance Measure and Relative Closeness Coefficient-Based Model for Assessing the Sustainable Development Barriers to Biofuel Enterprises in India," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    14. Kai Whiting & Luis Gabriel Carmona & Angeles Carrasco & Tânia Sousa, 2017. "Exergy Replacement Cost of Fossil Fuels: Closing the Carbon Cycle," Energies, MDPI, vol. 10(7), pages 1-21, July.
    15. Jenny Trinh & Fumi Harahap & Anton Fagerström & Julia Hansson, 2021. "What Are the Policy Impacts on Renewable Jet Fuel in Sweden?," Energies, MDPI, vol. 14(21), pages 1-30, November.
    16. Artur Kierzkowski & Tomasz Kisiel, 2021. "Simulation Model for the Estimation of Energy Consumption of the Baggage Handling System in the Landside Area of the Airport," Energies, MDPI, vol. 15(1), pages 1-11, December.
    17. Sergio Ortega Alba & Mario Manana, 2017. "Characterization and Analysis of Energy Demand Patterns in Airports," Energies, MDPI, vol. 10(1), pages 1-35, January.
    18. Chungil Kim & Hyung-Jun Song, 2022. "Glare-Free Airport-Based Photovoltaic System via Optimization of Its Azimuth Angle," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    19. Jiang, Mingkun & Qi, Lingfei & Yu, Ziyi & Wu, Dadi & Si, Pengfei & Li, Peiran & Wei, Wendong & Yu, Xinhai & Yan, Jinyue, 2021. "National level assessment of using existing airport infrastructures for photovoltaic deployment," Applied Energy, Elsevier, vol. 298(C).
    20. Asmatulu, Eylem & Twomey, Janet & Overcash, Michael, 2013. "Evaluation of recycling efforts of aircraft companies in Wichita," Resources, Conservation & Recycling, Elsevier, vol. 80(C), pages 36-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:7:y:2018:i:2:p:32-:d:148751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.