IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v5y2016i1p3-d61786.html
   My bibliography  Save this article

Consumers’ Perspective on Full-Scale Adoption of Smart Meters: A Case Study in Västerås, Sweden

Author

Listed:
  • Iana Vassileva

    (School of Sustainable Development of Society and Technology, Mälardalen University, P.O. Box 883, Västerås SE-721 23, Sweden)

  • Javier Campillo

    (School of Sustainable Development of Society and Technology, Mälardalen University, P.O. Box 883, Västerås SE-721 23, Sweden)

Abstract

Large-scale deployment of reliable smart electricity metering networks has been considered as the first step towards a smart, integrated and efficient grid. On the consumer’s side, however, the real impact is still uncertain and limited. This paper evaluates the consumer’s perspective in the city of Västerås, Sweden, where full implementation of smart meters has been reached. New services, such as consumption feedback and the possibility to choose dynamic electricity pricing contracts, have been available from the adoption of this infrastructure. A web-based survey evaluating customers’ perception of these new services was carried out. The survey included consumers’ personal information, preferences about the type of information and the frequency of delivery and the preference for electricity pricing contracts. The results showed that the electricity consumption information offered by distribution system operators (DSOs) today is not detailed enough for customers to react accordingly. Additionally, while variable pricing contracts are becoming more popular, the available pricing schemes do not encourage customers to increase their consumption flexibility. Therefore, more detailed information from the smart meters should be made available, including disaggregated electricity consumption per appliance that would allow consumers to have more control over their energy consumption activities.

Suggested Citation

  • Iana Vassileva & Javier Campillo, 2016. "Consumers’ Perspective on Full-Scale Adoption of Smart Meters: A Case Study in Västerås, Sweden," Resources, MDPI, vol. 5(1), pages 1-18, January.
  • Handle: RePEc:gam:jresou:v:5:y:2016:i:1:p:3-:d:61786
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/5/1/3/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/5/1/3/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Faruqui, Ahmad & Sergici, Sanem & Sharif, Ahmed, 2010. "The impact of informational feedback on energy consumption—A survey of the experimental evidence," Energy, Elsevier, vol. 35(4), pages 1598-1608.
    2. Carrie Armel, K. & Gupta, Abhay & Shrimali, Gireesh & Albert, Adrian, 2013. "Is disaggregation the holy grail of energy efficiency? The case of electricity," Energy Policy, Elsevier, vol. 52(C), pages 213-234.
    3. Gerpott, Torsten J. & Paukert, Mathias, 2013. "Determinants of willingness to pay for smart meters: An empirical analysis of household customers in Germany," Energy Policy, Elsevier, vol. 61(C), pages 483-495.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schultz, P. Wesley & Estrada, Mica & Schmitt, Joseph & Sokoloski, Rebecca & Silva-Send, Nilmini, 2015. "Using in-home displays to provide smart meter feedback about household electricity consumption: A randomized control trial comparing kilowatts, cost, and social norms," Energy, Elsevier, vol. 90(P1), pages 351-358.
    2. Penelope Buckley, 2020. "Prices, information and nudges for residential electricity conservation : A meta-analysis," Post-Print hal-02500507, HAL.
    3. Astier, Nicolas, 2018. "Comparative feedbacks under incomplete information," Resource and Energy Economics, Elsevier, vol. 54(C), pages 90-108.
    4. Nicolas Astier, 2016. "Comparative Feedbacks under Incomplete Information," Working Papers hal-01465189, HAL.
    5. Fettermann, Diego Castro & Cavalcante, Caroline Gobbo Sá & Ayala, Néstor Fabián & Avalone, Marianne Costa, 2020. "Configuration of a smart meter for Brazilian customers," Energy Policy, Elsevier, vol. 139(C).
    6. Buckley, Penelope, 2020. "Prices, information and nudges for residential electricity conservation: A meta-analysis," Ecological Economics, Elsevier, vol. 172(C).
    7. Khosrowpour, Ardalan & Jain, Rishee K. & Taylor, John E. & Peschiera, Gabriel & Chen, Jiayu & Gulbinas, Rimas, 2018. "A review of occupant energy feedback research: Opportunities for methodological fusion at the intersection of experimentation, analytics, surveys and simulation," Applied Energy, Elsevier, vol. 218(C), pages 304-316.
    8. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2019. "Functional Data Analysis of high-frequency load curves reveals drivers of residential electricity consumption," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-16, June.
    9. Shahzeen Z. Attari & Gautam Gowrisankaran & Troy Simpson & Sabine M. Marx, 2014. "Does Information Feedback from In-Home Devices Reduce Electricity Use? Evidence from a Field Experiment," NBER Working Papers 20809, National Bureau of Economic Research, Inc.
    10. Valor, Carmen & Escudero, Carmen & Labajo, Victoria & Cossent, Rafael, 2019. "Effective design of domestic energy efficiency displays: A proposed architecture based on empirical evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    11. Rihar, Miha & Hrovatin, Nevenka & Zoric, Jelena, 2015. "Household valuation of smart-home functionalities in Slovenia," Utilities Policy, Elsevier, vol. 33(C), pages 42-53.
    12. Chou, Jui-Sheng & Gusti Ayu Novi Yutami, I, 2014. "Smart meter adoption and deployment strategy for residential buildings in Indonesia," Applied Energy, Elsevier, vol. 128(C), pages 336-349.
    13. Wu, Junqi & Niu, Zhibin & Li, Xiang & Huang, Lizhen & Nielsen, Per Sieverts & Liu, Xiufeng, 2023. "Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach," Energy, Elsevier, vol. 263(PD).
    14. Brown, Christopher J. & Markusson, Nils, 2019. "The responses of older adults to smart energy monitors," Energy Policy, Elsevier, vol. 130(C), pages 218-226.
    15. Chatzigeorgiou, I.M. & Andreou, G.T., 2021. "A systematic review on feedback research for residential energy behavior change through mobile and web interfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Xu, Xiaojing & Chen, Chien-fei, 2019. "Energy efficiency and energy justice for U.S. low-income households: An analysis of multifaceted challenges and potential," Energy Policy, Elsevier, vol. 128(C), pages 763-774.
    17. Ana Salomé García-Muñiz & María Rosalía Vicente, 2021. "The Effects of Informational Feedback on the Energy Consumption of Online Services: Some Evidence for the European Union," Energies, MDPI, vol. 14(10), pages 1-14, May.
    18. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    19. Zhou, Yang & Shi, Zhixiong & Shi, Zhengyu & Gao, Qing & Wu, Libo, 2019. "Disaggregating power consumption of commercial buildings based on the finite mixture model," Applied Energy, Elsevier, vol. 243(C), pages 35-46.
    20. Hege Westskog & Tanja Winther & Hanne Sæle, 2015. "The Effects of In-Home Displays—Revisiting the Context," Sustainability, MDPI, vol. 7(5), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:5:y:2016:i:1:p:3-:d:61786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.